
Experiences VLAIO TETRA
OpenCloudEdge project

TETRA OpenCloudEdge team

Vrije Universiteit Brussel

Steffen Thielemans, Luca Gattobigio, Priscilla Benedetti

steffen.thielemans@vub.be, luca.gattobigio@vub.be, priscilla.benedetti@vub.be

mailto:steffen.thielemans@vub.be
mailto:luca.Gattobigio@vub.be
mailto:priscilla.benedetti@vub.be

VLAIO TETRA OpenCloudEdge partners

MD Management

Itecon

Investigate open source cloud ease of use, deployment & maintenance

Consume public cloud: @

On-premise cloud: &

Primary workload: JupyterHub SaaS for educational purposes

TETRA OpenCloudEdge project goals & results

3

TETRA OpenCloudEdge project goals & results

Extend the cloud to the edge

orchestrating Raspberry Pi IoT edge devices

Serverless computing with OpenFaaS Fuction-as-a-Service

Multi / hybrid cloud interaction

Cloud-agnostic Infrastructure as Code (IaC) via

Inter-cloud communications via

4

What is OpenStack?

• Open source project for cloud computing infrastructure

• First release in 2010

• Initiative by &

• Semi-annual release schedule

• A vast collection of different service components
• Compute, storage, networking, authentication, orchestration, metering, etc.

5

OpenStack service components

6
Source: https://www.openstack.org/software/

On-premise OpenStack cloud setup

7

OpenStack using Kolla-Ansible deployment

• OpenStack Kolla project
• OpenStack components in containers

• Straightforward distribution, deployment & versioning

• Ansible = Open source automated deployment tool
• Kolla-Ansible features the necessary playbooks

• OpenStack service components operate on top of a host OS

• Kolla-Ansible supports CentOS, RHEL, Ubuntu, Debian

• Original choice 8

• Migration to 20.04 LTS

• On-premise OpenStack & other cloud deployments migrated

On-premise OpenStack cloud setup

8

Experiment: OpenStack Rocky (Aug 2018) → Xena (Oct 2021)

• Kolla-Ansible provides version-by-version upgrades
• Include database changes, API changes, etc.

• Intermediate host OS & dependency upgrades
→ Consult upgrade notes & support matrix

9

Upgrading on-premise OpenStack

Downtime upgrade OpenStack components
→ ≈ 1 min per service (Horizon, Keystone, Neutron, etc.)

→ Certain version upgrades require Docker / host OS upgrade
Extended maintenance: Upgrade nodes on individual basis

Cloud instances remain operational during upgrades ✓
• Nova’s back-end (libvirt/KVM/QEMU) not directly affected by the upgrades

Network connectivity briefly interrupted
• Neutron & OpenVSwitch Kolla services upgraded

10

OpenStack scheduled maintenance

High-availability OpenStack APIs via Haproxy & KeepAlived

Recommendation distributed decision making quorum: uneven # control nodes
→ Over half of the nodes available and agree with decisions

11

OpenStack (un)scheduled outages

3 nodes → can lose 1 node 5 nodes → can lose 2 nodes

Node-specific resources can become unavailable
Cloud instances, Network resources (Neutron routers & DHCP), Storage

→ Scheduled outage: first migrate resources to different nodes

→ Unscheduled outage: downtime or redeployment required

12

OpenStack (un)scheduled outages

Node A

Node-specific
resources

Node B

Node-specific
resources

Migrate

Ceph on-premise distributed storage

Network storage essential in cloud infrastructure

Ceph: open source distributed block / object / file storage

13

Ceph on-premise distributed storage

Initial budget-friendly Ceph solution

• Consumer grade 2,5” HDDs & dual 1 Gbps networks

→ PERFORMANCE ISSUES

Ceph distributed storage recommendations:

• Enterprise grade SSDs (or HDDs)

• 10 Gbps+ network(s) → Distributed storage

14

Microservices: Scalable cloud-agnostic apps

15
Source: Alex Barashkov, Microservices vs. Monolith Architecture

Market leading container orchestrator platform

Open source, first release in 2014 as Google project

Provides:
• Automated rollouts & self-healing
• Load balancing & horizontal scaling
• …

Cloud-agnostic *
Self-hosted (in cloud VMs) or as PaaS managed by cloud providers
→ Avoid vendor-specific tools and extensions

16

Cloud computing with Kubernetes

On-premise Kubernetes setup

Production environment deployed natively @ on-premise servers

Test environments deployed @ OpenStack

High-availability Kubernetes cluster via

as IPv4 & IPv6 Container Network Interface (CNI)

On-premise cached & internal Docker image repositories

17

Multiple apps on shared IP

Automated DNS entries

Certificate management

→

→ myapplication.opencloudedge.be

→

On-premise Kubernetes setup

Nginx ingress controller with ExternalDNS and cert-manager

18

myapplication @
134.184.2.162

myApplication

myApplication

myApplication 1

otherApplication 1

otherApplication 2

myApplication 2

myApplication 3

myApplication n

JupyterHub as cloud-based workload

JupyterHub SaaS for educational purposes

• Web-based individual Jupyter Notebook programming environments

→ Sandboxed multi-user compute & storage via Kubernetes

• Teaching & evaluation of various ir. / ing. programming courses

→ Sporadically exceeds 150 simultaneous sessions

19

20

Centralized management of edge devices via Kubernetes API

Orchestration & self-healing of containerized applications

Managed Network connectivity & service discovery via integrated DNS

Persistent network storage

Kubernetes for edge nodes

Raspberry Pi 4 devices as edge nodes for IoT/building automation

→ Edge nodes tainted to only schedule specific workloads

21

Kubernetes edge-based workload

Kubernetes edge nodes

Kubernetes cloud nodes

Ingress

22

Use Serverless Computing

• Focus on code

• Modular

• Event driven / REST endpoints

• Stateless

• Isomorphic

• Automatic scalability

From LinuxFoundationX: LFS157x,Introduction to Serverless on Kubernetes

23

Functions-as-a-Service (FaaS)

Benefits:

• Automated scaling

• Smart resources usage

• Strongly reduced infrastructure
maintenance and costs

• Simplified development

Drawbacks:

• Lack of standardization and ecosystem
maturity

• Occasionally, more functions needed

• Cold start latency issues

24

Serverless Benefits vs Drawbacks

Serverless approach is particularly suitable for workloads:

• Asynchronous, concurrent and easy to parallelize into units of work

• Stateless, ephemeral and/or not too latency sensitive (cold start issues)

• With unpredictable variance in scaling requirements

• Highly dynamic in terms of changing business requirements

25

General Scope

Kubernetes Controller for OpenFaaS

Configurable with ImagePullPolicyFrom https://docs.openfaas.com/architecture/stack/

Cluster
Infrastructure

26

OpenFaaS

MULTI-CLOUD ADOPTION
2021 Reports

https://www.hashicorp.com/state-of-the-cloud

27

• Write, Plan, and Create Infrastructure-as-Code

• Code can be (re)used to create a given infrastructure on any (cloud) platform

• A single tool to manage any resource, regardless of its location

TERRAFORM
Multi-cloud environment orchestration

28

Handler of the
declarations

specified in the
code

AWS Provider

TERRAFORM TOOL

OpenStack
Provider

K8s Provider

[...]

AWS Cloud

OpenStack Cloud

K8s Cluster

[…]

Configuration
Files written
for Terraform

Terraform tool
Users

From declaration to deployment

TERRAFORM

29

Infrastructure-as-Code (IaC)

Infrastructure exampleConfiguration file example

provider "openstack" {}

resource "openstack_compute_instance_v2" "tf_instance" {

count = 2

name = "tf_instance"

image_name = "cirros"

flavor_name = "m1.tiny"

network {

name = openstack_networking_network_v2.tf_network.name

}

}

resource "openstack_networking_network_v2" "tf_network" {

name = "tf_network"

}

resource "openstack_networking_subnet_v2" "tf_subnet" {

name = "tf_subnet"

network_id = openstack_networking_network_v2.tf_network.id

cidr = "192.168.150.0/24"

}

resource "openstack_networking_router_v2" "router" {

name = "test"

admin_state_up = true

external_network_id = "0d91136f-b550-4c00-bf65-9542b8e3bb1d"

}

30

MULTI-CLOUD ORCHESTRATION VIA TERRAFORM
Multi environment deployment

31

OpenStack and AWS code comparison

OpenStack

provider "openstack" {}

resource "openstack_compute_instance_v2" "instance" {

name = var.instance_name

image_name = var.image_name

flavor_name = var.flavor_name

network { name = openstack_networking_network_v2.net.name }

}

resource "openstack_networking_network_v2" "net" {

name = var.network_name

}

resource "openstack_networking_subnet_v2" "subnet" {

name = var.subnet_name

network_id = openstack_networking_network_v2.net.id

cidr = var.cidr_value

}

resource "openstack_blockstorage_volume_v2" "vol" {

name = var.volume_name

size = var.volume_size

}

AWS

provider "aws" {}

resource "aws_instance" "instance" {

tags = { Name = var.instance_name }

ami = var.image_name

instance_type = var.flavor_name

subnet_id = aws_subent.subnet.id

}

resource "aws_vpc" "net" {

name = var.network_name

}

resource "aws_subnet" "subnet" {

name = var.subnet_name

network_id = openstack_networking_network_v2.net.id

cidr = var.cidr_value

}

resource "aws_ebs_volume" "vol" {

name = var.volume_name

size = var.volume_size

}

TERRAFORM

32

TERRAFORM WORKSHOP
Basics and advanced topics

• INIT
Initialize Terraform and look for providers

• PLAN
Specifies what to execute according to the
configuration files

• APPLY
Perform the execution

• DESTROY
Destroy all the resources

33

MULTI-CLOUD NETWORKING VIA CONSUL
Connect a multi-cloud environment

34

• Open-source tool for deploying a service mesh (Terraform integration)

• It offers centralized registry, service discovery, health checks, zero trust
network, load-balancer, Key-Value store...

• Can be deployed in virtual machines and containers

CONSUL
Multi-cloud service mesh

35

MULTI-CLOUD NETWORKING VIA CONSUL

Client

App
A

Server Server Server

Datacenter 1

Client

App
B

Server Server Server

Datacenter 2

Client

App
B

RPC / LAN Gossip

WAN Gossip

Remote DC
Forwarding

Name Datacenter IP Status

App A 1 192.168.1.45 Alive

App B 2
10.0.0.54,
10.0.0.98

Alive,
Alive

Name Datacenter IP Status

App A 1 192.168.1.45 Alive

App B 2
10.0.0.54,
10.0.0.98

Alive,
Alive

RPC / LAN Gossip

Architecture

36

Datacenter federation: Consul UI

MULTI-CLOUD NETWORKING VIA CONSUL

37

Vlaams Supercomputer Centrum (VSC)
OpenStack Cloud

Kubernetes cluster

Consul control plane

Mesh
GW

VUB
OpenStack Cloud

Kubernetes cluster

Mesh
GW

Consul control plane

MULTI-CLOUD CONNECTION
K8s cluster federation

App A App B

38

39

Willingness to schedule additional workshops and share material

Contact us: Steffen.Thielemans@vub.be; kris.steenhaut@vub.be

Thank you! Questions?

WORKSHOPS AVAILABLE

mailto:Steffen.Thielemans@vub.be
mailto:kris.steenhaut@vub.be

• Software installation: Terraform CLI

• Hashicorp Configuration Language: usage and explanation

• Basic commands: init, plan, apply, destroy

• Infrastructure orchestration: deploy, change, delete

• Use of variables and functions: input, output, count

• Multiple providers: docker, OpenStack, authentications, providers comparison
(example with AWS)

• Examples: modules, infrastructure import, deployment of a webserver

40

Workshop

• Set up & consume elementary OpenStack project

• Tenant network, SSH key, Deploy cloud instances from image
• Volume snapshots of modified cloud instances
• Deploy additional instances from this volume snapshot

• Set up and deploy multi-node OpenStack infrastructure
using Kolla-Ansible

• OpenStack-inside-OpenStack: Deployed inside OpenStack VMs
• Set up host machines, Ansible & Kolla-Ansible configuration
• Deploy OpenStack with Kolla containers
• Consume the OpenStack-inside-OpenStack

41

Workshop

• Brief introduction to Docker containers & docker-compose

• Deployment of multi-node Kubernetes environment
• Simplified testing/development with MicroK8s

• Kubernetes interaction and deployments
• Kubectl and Kubernetes Dashboard
• JupyterHub from Helm package manager
• Porting containerized webapp to autonomous

horizontally scalable Kubernetes deployment

42

Workshop

