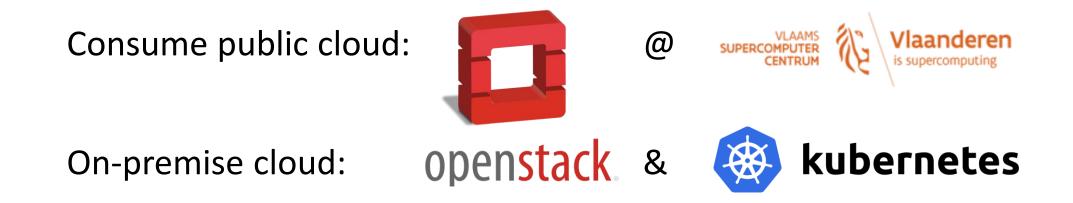
Experiences VLAIO TETRA OpenCloudEdge project

TETRA OpenCloudEdge team Vrije Universiteit Brussel

Steffen Thielemans, Luca Gattobigio, Priscilla Benedetti

steffen.thielemans@vub.be, luca.gattobigio@vub.be, priscilla.benedetti@vub.be


UNIVERSITÀ DEGLI STUDI DI PERUGIA

VLAIO TETRA OpenCloudEdge partners

TETRA OpenCloudEdge project goals & results

Investigate open source cloud ease of use, deployment & maintenance

Primary workload: JupyterHub SaaS for educational purposes

TETRA OpenCloudEdge project goals & results

Extend the cloud to the edge

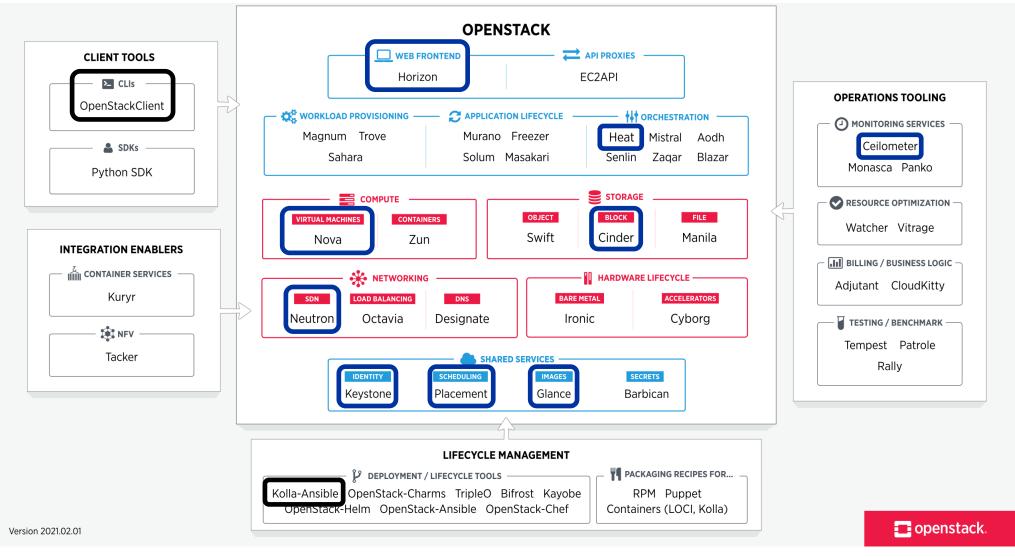
Serverless computing with OpenFaaS Fuction-as-a-Service

Multi / hybrid cloud interaction

Cloud-agnostic Infrastructure as Code (IaC) via **Terraform**

Inter-cloud communications via **Consul**

What is OpenStack?



- Open source project for cloud computing infrastructure
- First release in 2010

- Semi-annual release schedule
- A vast collection of different service components
 - Compute, storage, networking, authentication, orchestration, metering, etc.

OpenStack service components

Source: https://www.openstack.org/software/

On-premise OpenStack cloud setup

OpenStack using **Kolla-Ansible** deployment

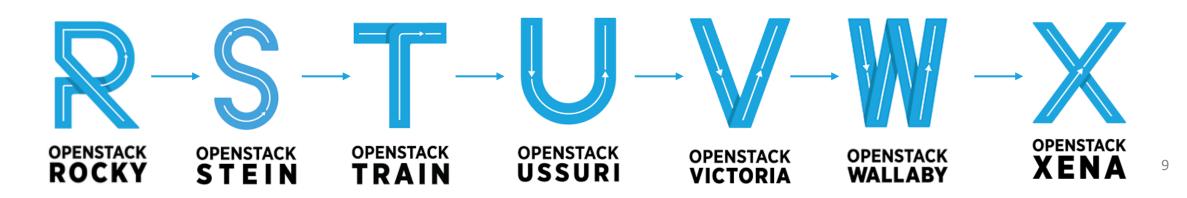
- OpenStack Kolla project
 - OpenStack components in containers
 - Straightforward distribution, deployment & versioning

- Ansible = Open source automated deployment tool
 - Kolla-Ansible features the necessary playbooks

On-premise OpenStack cloud setup

- OpenStack service components operate on top of a host OS
- Kolla-Ansible supports *CentOS*, *RHEL*, *Ubuntu*, *Debian*

On-premise OpenStack & other cloud deployments migrated


Upgrading on-premise OpenStack

Experiment: OpenStack *Rocky* (Aug 2018) → *Xena* (Oct 2021)

- Kolla-Ansible provides version-by-version upgrades
 - Include database changes, API changes, etc.
- Intermediate host OS & dependency upgrades

 \rightarrow Consult upgrade notes & support matrix

OpenStack scheduled maintenance

<u>Downtime</u> upgrade OpenStack components $\rightarrow \approx 1$ min per service (Horizon, Keystone, Neutron, etc.)

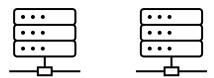
→ Certain version upgrades require Docker / host OS upgrade Extended maintenance: Upgrade nodes on individual basis

Cloud instances remain operational during upgrades <

• *Nova*'s back-end (*libvirt/KVM/QEMU*) not directly affected by the upgrades

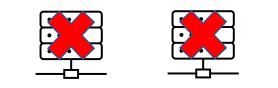
Network connectivity briefly interrupted

• Neutron & OpenVSwitch Kolla services upgraded


OpenStack (un)scheduled outages

High-availability OpenStack APIs via Haproxy & KeepAlived

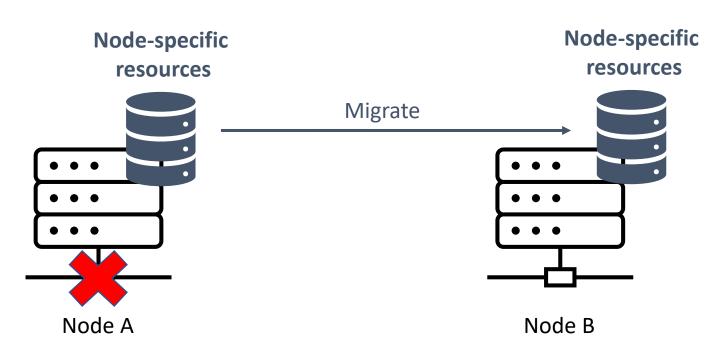
Recommendation distributed decision making **quorum**: uneven # control nodes


 \rightarrow Over half of the nodes available and agree with decisions

3 nodes \rightarrow can lose 1 node

5 nodes \rightarrow can lose 2 nodes

OpenStack (un)scheduled outages

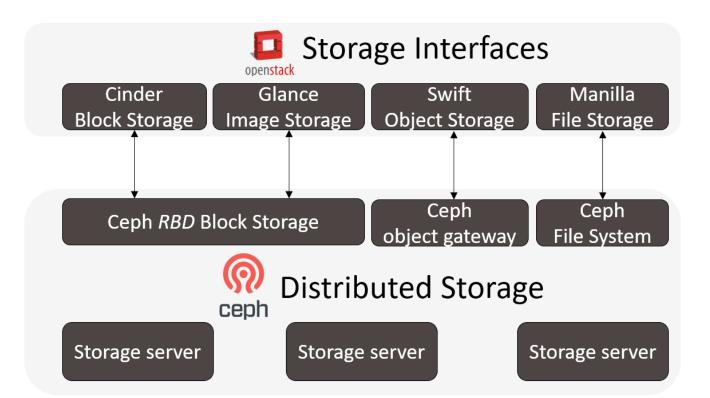

Node-specific resources can become unavailable

Cloud instances, Network resources (Neutron routers & DHCP), Storage

- \rightarrow Scheduled outage:
- \rightarrow Unscheduled outage:

first migrate resources to different nodes

downtime or redeployment required



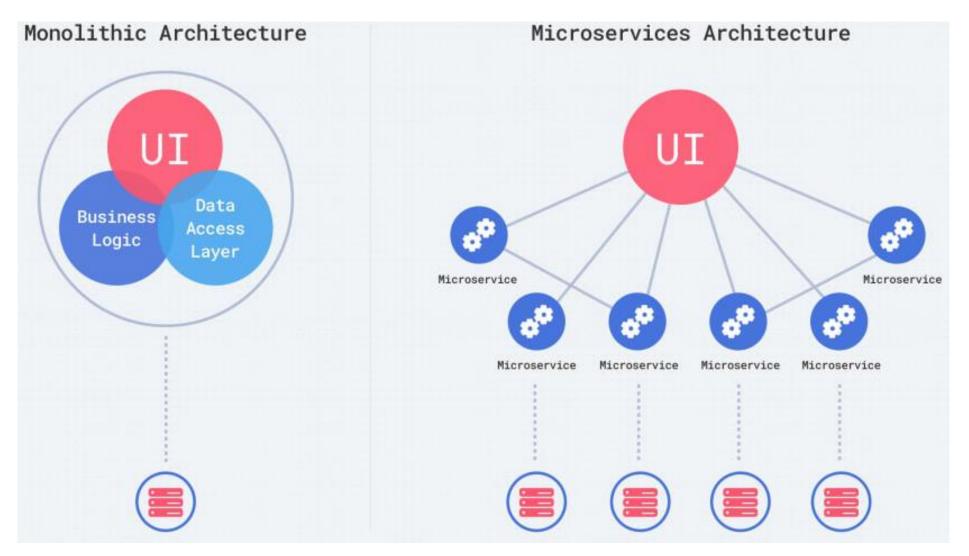
Ceph on-premise distributed storage

Network storage essential in cloud infrastructure

Ceph: open source distributed block / object / file storage

Ceph on-premise distributed storage

Initial budget-friendly Ceph solution


• Consumer grade 2,5" HDDs & dual 1 Gbps networks

→ PERFORMANCE ISSUES

<u>Ceph distributed storage recommendations:</u>

- Enterprise grade SSDs (or HDDs)
- 10 Gbps+ network(s) \rightarrow <u>Distributed</u> storage

Microservices: Scalable cloud-agnostic apps

Source: Alex Barashkov, Microservices vs. Monolith Architecture

Cloud computing with Kubernetes

Market leading container orchestrator platform

Open source, first release in 2014 as Google project

Provides:

- Automated rollouts & self-healing
- Load balancing & horizontal scaling

• ...

Cloud-agnostic *

Self-hosted (in cloud VMs) or as PaaS managed by cloud providers

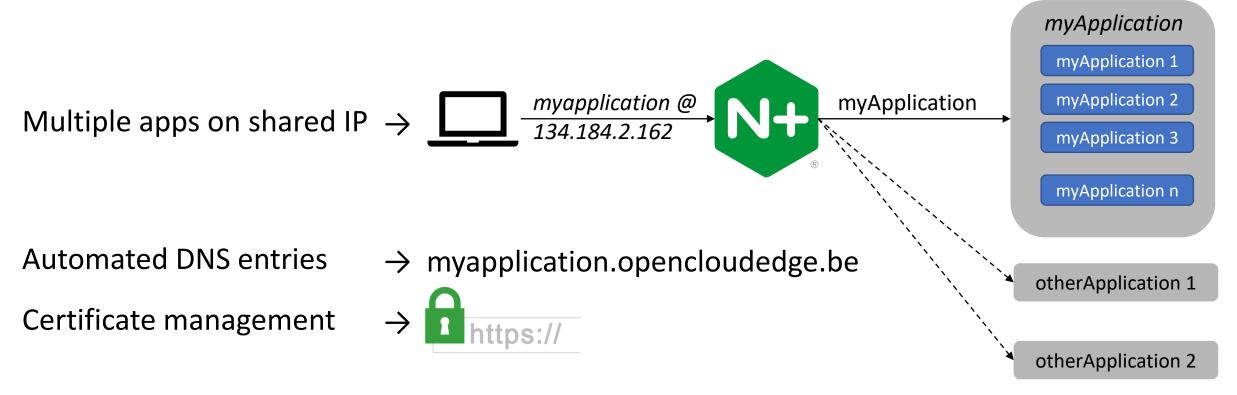
 \rightarrow Avoid vendor-specific tools and extensions

On-premise Kubernetes setup

Production environment deployed natively @ on-premise servers

Test environments deployed @ OpenStack

High-availability Kubernetes cluster via


CALICO as IPv4 & IPv6 Container Network Interface (CNI)

On-premise cached & internal Docker image repositories

On-premise Kubernetes setup

Nginx ingress controller with ExternalDNS and cert-manager

JupyterHub as cloud-based workload

JupyterHub SaaS for educational purposes

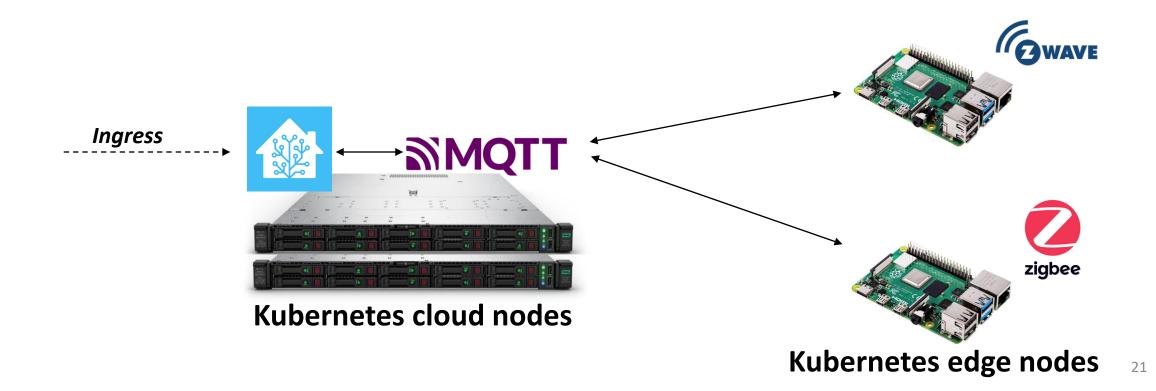
Web-based individual Jupyter Notebook programming environments
 → Sandboxed multi-user compute & storage via Kubernetes

Teaching & evaluation of various ir. / ing. programming courses
 → Sporadically exceeds 150 simultaneous sessions

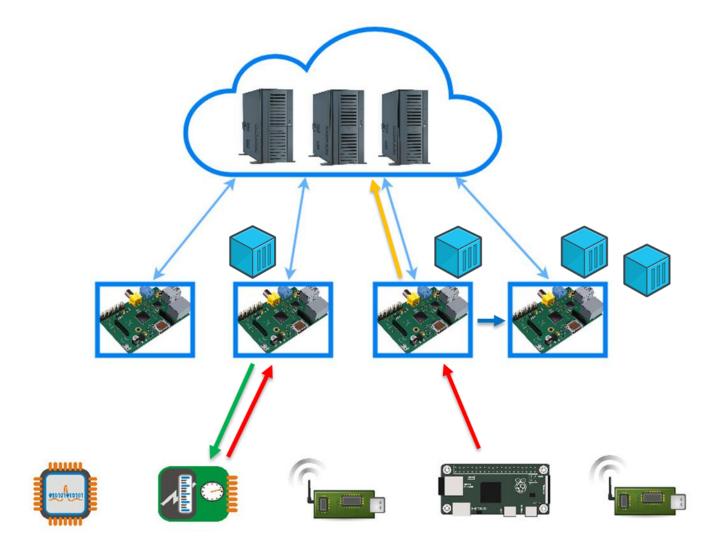
Kubernetes for edge nodes

Centralized management of edge devices via Kubernetes API

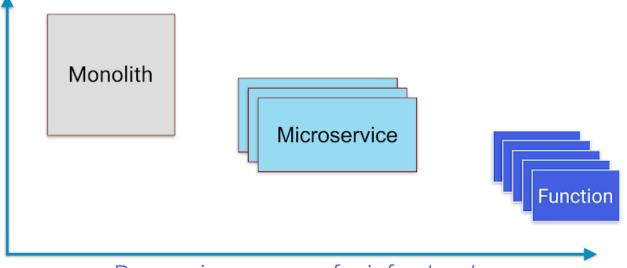
Orchestration & **self-healing** of containerized applications


Managed Network connectivity & service discovery via integrated DNS

Persistent network storage


Kubernetes edge-based workload

Raspberry Pi 4 devices as *edge* nodes for IoT/building automation \rightarrow Edge nodes *tainted* to only schedule specific workloads


Use Serverless Computing

Functions-as-a-Service (FaaS)

Size/complexity

- Focus on code
- Modular
- Event driven / REST endpoints
- Stateless
- Isomorphic
- Automatic scalability

Decreasing concern for infrastructure

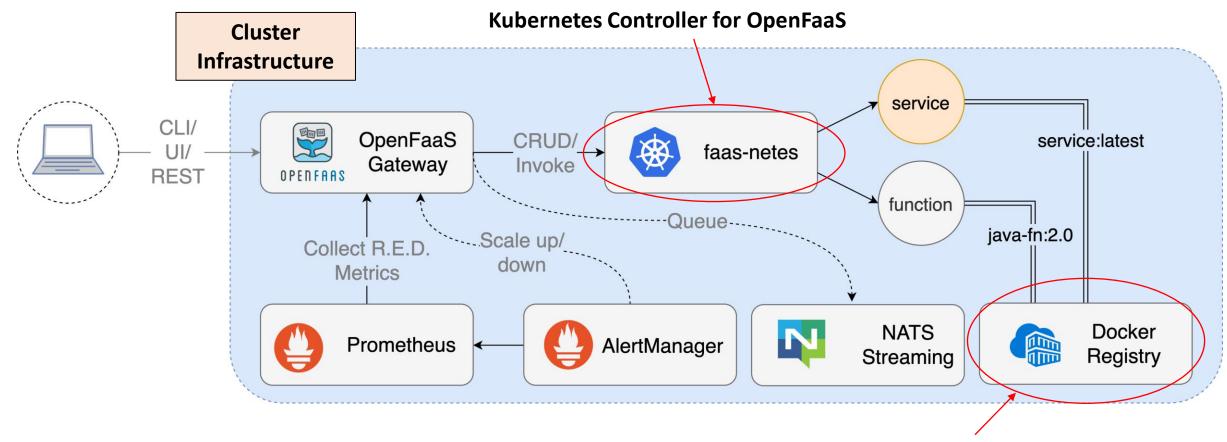
From LinuxFoundationX: LFS157x, Introduction to Serverless on Kubernetes

Serverless Benefits vs Drawbacks

Benefits:

- Automated scaling
- Smart resources usage
- Strongly **reduced** infrastructure maintenance and costs
- Simplified development

Drawbacks:

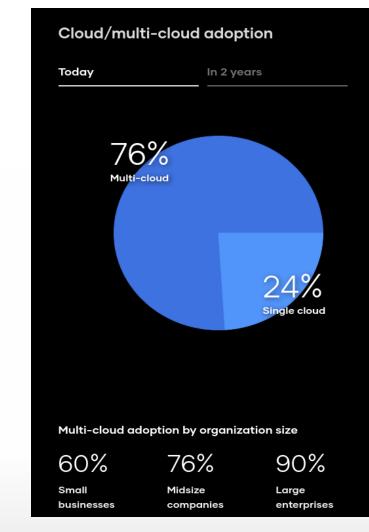

- Lack of standardization and ecosystem maturity
- Occasionally, more functions needed
- Cold start latency issues

General Scope

Serverless approach is particularly suitable for workloads:

- Asynchronous, concurrent and easy to parallelize into units of work
- Stateless, ephemeral and/or not too latency sensitive (cold start issues)
- With unpredictable variance in scaling requirements
- Highly dynamic in terms of changing business requirements

OpenFaaS

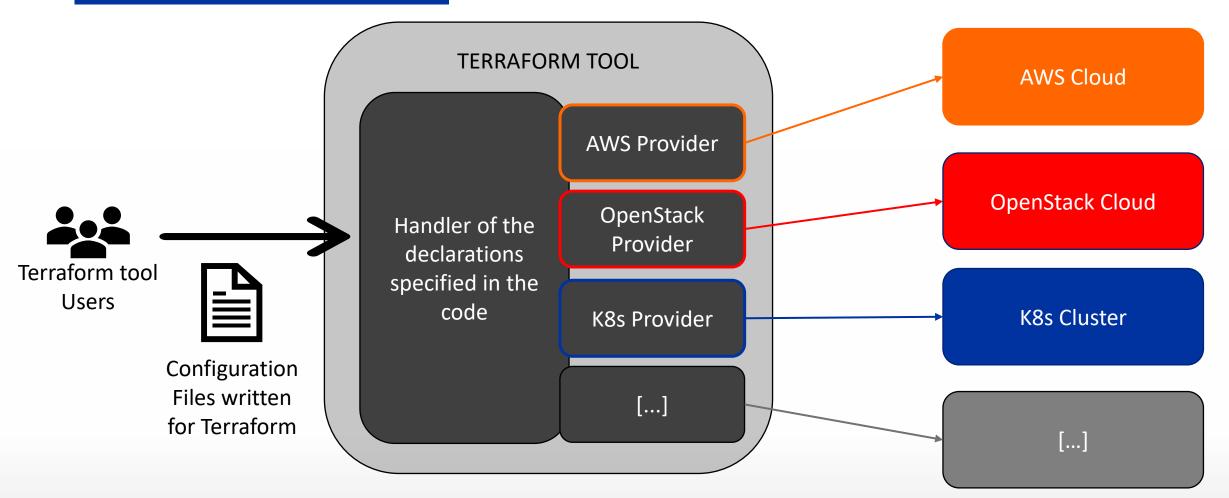


From https://docs.openfaas.com/architecture/stack/

Configurable with ImagePullPolicy

MULTI-CLOUD ADOPTION

2021 Reports

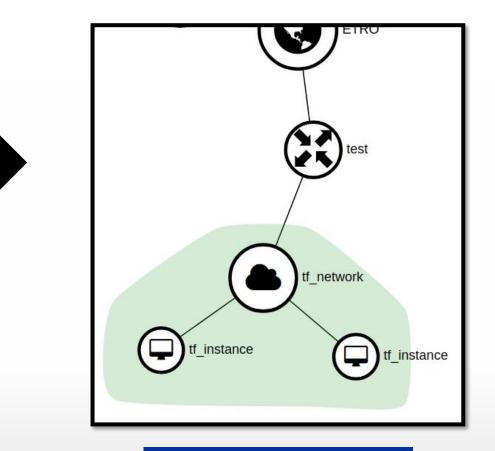


- Write, Plan, and Create Infrastructure-as-Code
- Code can be (re)used to create a given infrastructure on any (cloud) platform
- A single tool to manage any resource, regardless of its location

TERRAFORM

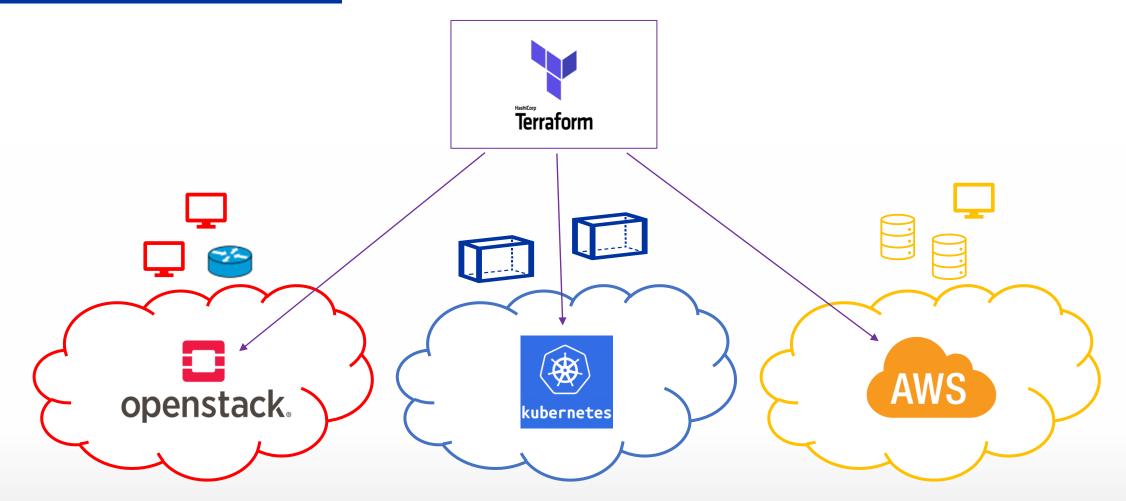
From declaration to deployment

Infrastructure-as-Code (IaC)


provider "openstack" {}

```
resource "openstack_compute_instance_v2" "tf_instance" {
    count = 2
    name = "tf_instance"
    image_name = "cirros"
    flavor_name = "m1.tiny"
    network {
        name = openstack_networking_network_v2.tf_network.name
    }
}
resource "openstack_networking_network_v2" "tf_network" {
        name = "tf_network"
}
```

```
resource "openstack_networking_subnet_v2" "tf_subnet" {
    name = "tf_subnet"
    network_id = openstack_networking_network_v2.tf_network.id
    cidr = "192.168.150.0/24"
}
```


```
resource "openstack_networking_router_v2" "router" {
    name = "test"
    admin_state_up = true
    external_network_id = "0d91136f-b550-4c00-bf65-9542b8e3bb1d"
}
```

	Instance Name	Image Name	IP Address	Flavor	Key Pair	Status
	tf_instance	cirros	192.168.150.178	m1.tiny	-	Active
	tf_instance	cirros	192.168.150.55	m1.tiny		Active

MULTI-CLOUD ORCHESTRATION VIA TERRAFORM

Multi environment deployment

TERRAFORM

OpenStack and AWS code comparison

```
provider "openstack" {}
resource "openstack_compute_instance_v2" "instance" {
name = var.instance name
image_name = var.image_name
flavor_name = var.flavor_name
network { name = openstack_networking_network_v2.net.name }
resource "openstack_networking_network_v2" "net" {
name = var.network_name
resource "openstack_networking_subnet_v2" "subnet" {
name = var.subnet name
network_id = openstack_networking_network_v2.net.id
 cidr = var.cidr_value
resource "openstack blockstorage volume v2" "vol" {
name = var.volume name
size = var.volume size
```



```
resource "aws_instance" "instance" {
  tags = { Name = var.instance_name }
  ami = var.image_name
  instance_type = var.flavor_name
  subnet_id = aws_subent.subnet.id
}
```

```
resource "aws_vpc" "net" {
    name = var.network_name
```

```
resource "aws_subnet" "subnet" {
    name = var.subnet_name
    network_id = openstack_networking_network_v2.net.id
    cidr = var.cidr_value
```

```
resource "aws_ebs_volume" "vol" {
  name = var.volume_name
  size = var.volume size
```


TERRAFORM WORKSHOP

Basics and advanced topics

• INIT

Initialize Terraform and look for providers

• PLAN

Specifies what to execute according to the configuration files

• APPLY

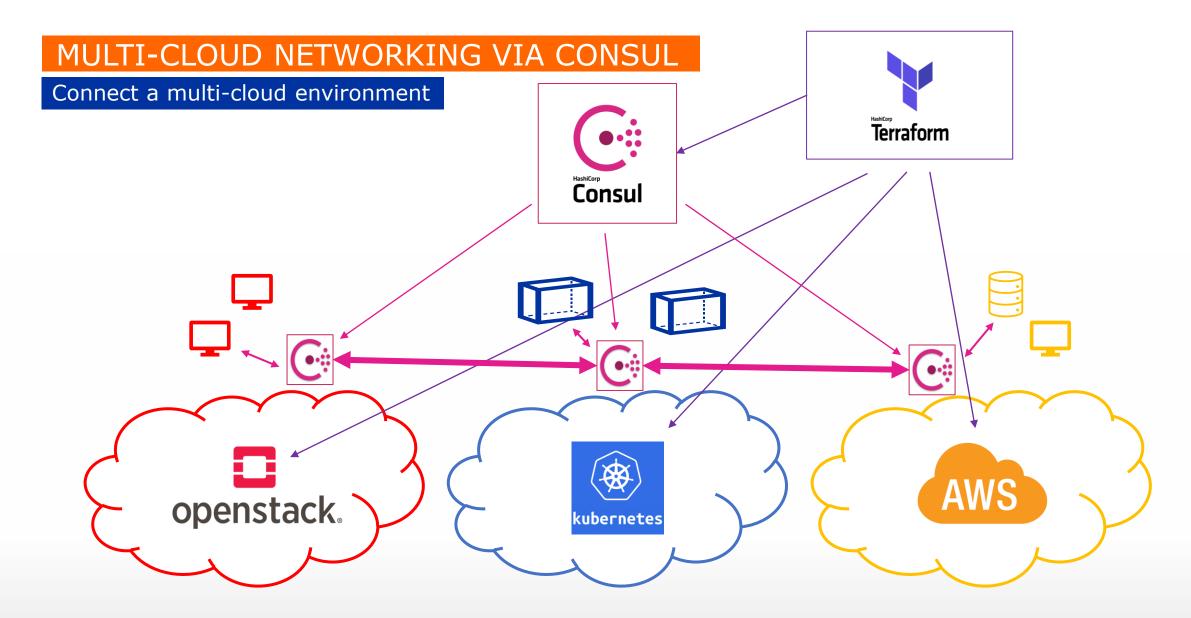
Perform the execution

DESTROY

Destroy all the resources

Enter a value: yes

openstack_networking_secgroup_v2.secgroup: Creating... openstack_networking_floatingip_v2.ws_floating_ip: Creating... openstack_networking_network v2.workshop_network: Creating... openstack_networking_secgroup_v2.secgroup_v1e: Creating... openstack_networking_secgroup_v1e_v2.secgroup_v1e: Creating... openstack_networking_secgroup_v1e_v2.secgroup_v1e: Creating... openstack_networking_secgroup_v1e_v2.secgroup_v1e: Creating... openstack_networking_secgroup_v1e_v2.secgroup_v1e: Creation complete after 0s [id=401cec09-360d-477a-aac1-b948b4d910d3] openstack_networking_secgroup_network: Creation complete after 5s [id=401cec09-360d-477a-aac1-b948b4d910d3] openstack_networking_network v2.workshop_network: Creation complete after 5s [id=c16202-a930-48b3-9476-08ac18708f06] openstack_networking_loatingip_v2.ws_Floating_ip: Creation complete after 6s [id=47ae9b31-423c-49ca-bc7d-b15f94e41e16] openstack_networking_floatingip_v2.ws_Floating_ip: Creation complete after 5s [id=450c0809-5ac5-48a4-b07e-b1457811a628] openstack_networking_router_v2.workshop_subnet: Creation complete after 5s [id=450c0809-5ac5-48a4-b07e-b1457811a628] openstack_networking_router_interface v2.workshop_subnet: Creation complete after 5s [id=450c27d-08b2-1974b3b046ab2a] openstack_networking_router_interface v2.router_interface: Creating... openstack_networking_router_interface v2.router_interface: Creating... openstack_compute_instance_v2.workshop_instance: Still Creating... [id=450c4234-ac3a-4f49-a03c-bc5af5f1d840] openstack_compute_instance_v2.workshop_instance: Creation complete after 1s [id=f18f067-4ad9-4383-97e1-67a1a88e750e] openstack_compute_floatingip_associate_v2.fip_associate: Creation complete after 2s [id=10.20.29.149/ff18f067-4ad9-4383-97e1-67a1a88e750e] openstack_compute_floatingip_associate_v2.fip_associate: Creation complete after 2s [id=10.20.29.149/ff18f067-4ad9-4383-97e1-67a1a88e750e] openstack_compute_floatingip_associate_v2.fip_associate: Creation complete after 2s [id=10.20.29.149/ff18f067-4ad9-4383-97e1-67a1a88e750e] Apply com

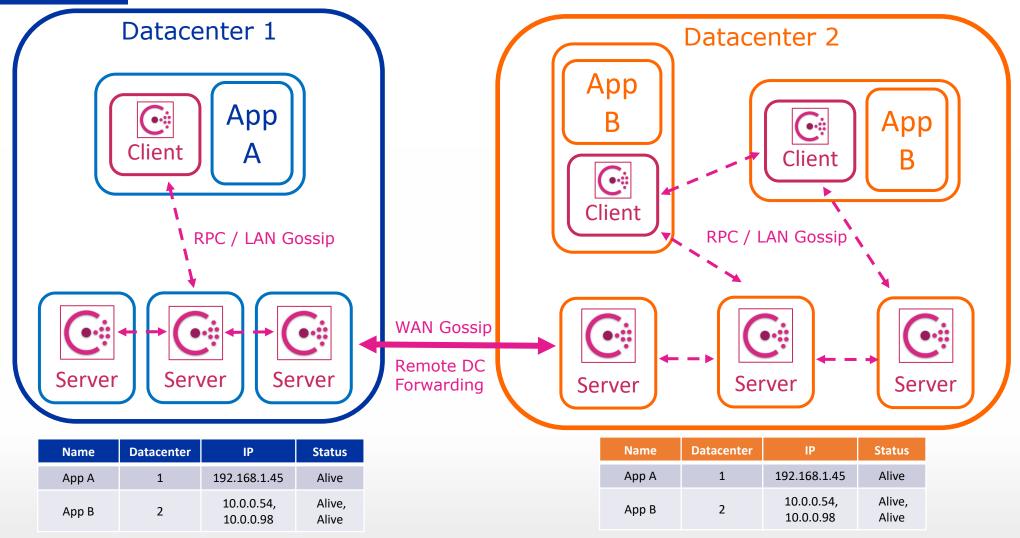

floating ip = "10.20.29.149"

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and working. Further configuration is required.

For online documentation and support please refer to <u>nginx.org</u>. Commercial support is available at <u>nginx.com</u>.

Thank you for using nginx.



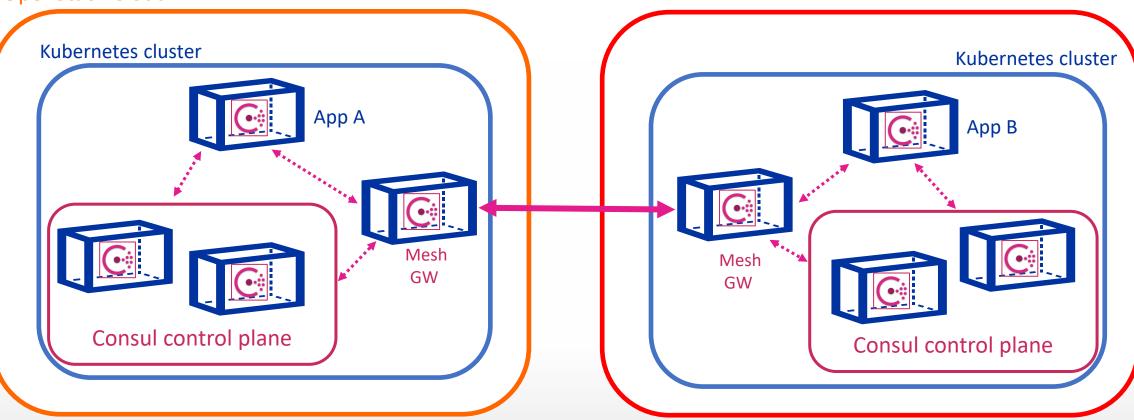
- Open-source tool for deploying a service mesh (Terraform integration)
- It offers centralized registry, service discovery, health checks, zero trust network, load-balancer, Key-Value store...
- Can be deployed in virtual machines and containers

MULTI-CLOUD NETWORKING VIA CONSUL

Architecture

MULTI-CLOUD NETWORKING VIA CONSUL

Datacenter federation: Consul UI


	С		0 8	https:// af6a	27064ceo	df4ff9b6d164a94ad8f06-1859206598.us-east-2.elb.amazonaws.com/ui/dc-aws/services
	dc-aws ^	Services	Nodes	Key/Value	ACL	Intentions
	DATACENTER	RS				
	dc-aws Lo	cal		~		
S	dc-opensta	ick				
ſ	प Search			Search A	cross ~	Health Status \vee Service Type 🗸
	🦻 mesh-g					
	⊕ Mesh Gate		tance			
	databas	se-instanc	e			
1	Instance			ргоху		
	🛿 static-c	lient				
1	Instance	🖗 in service	mesh with	ргоху		
	🖉 static-s	егvег				
1	Instance	🛞 in service	mesh with	ργοχν		

MULTI-CLOUD CONNECTION

K8s cluster federation

Vlaams Supercomputer Centrum (VSC) OpenStack Cloud

VUB OpenStack Cloud

Willingness to schedule additional workshops and share material

Contact us: Steffen.Thielemans@vub.be; kris.steenhaut@vub.be

Thank you! Questions?

Workshop

- Software installation: Terraform CLI
- Hashicorp Configuration Language: usage and explanation
- Basic commands: init, plan, apply, destroy
- Infrastructure orchestration: deploy, change, delete
- Use of variables and functions: input, output, count
- Multiple providers: docker, OpenStack, authentications, providers comparison (example with AWS)
- Examples: modules, infrastructure import, deployment of a webserver

Workshop

- Set up & consume elementary OpenStack project
 - Tenant network, SSH key, Deploy cloud instances from image
 - Volume snapshots of modified cloud instances
 - Deploy additional instances from this volume snapshot
- Set up and deploy multi-node OpenStack infrastructure using Kolla-Ansible
 - *OpenStack-inside-OpenStack*: Deployed inside OpenStack VMs
 - Set up host machines, Ansible & Kolla-Ansible configuration
 - Deploy OpenStack with Kolla containers
 - Consume the OpenStack-inside-OpenStack

- Brief introduction to **Docker** containers & docker-compose
- Deployment of multi-node **Kubernetes** environment
 - Simplified testing/development with MicroK8s

- Kubernetes interaction and deployments
 - Kubectl and Kubernetes Dashboard

Workshop

- JupyterHub from Helm package manager
- Porting containerized webapp to autonomous horizontally scalable Kubernetes deployment

CP	CPU Usage									Memory Usage																		
CPU (cores)	4 2 0 15:38	15:39	15:40	15:41	15:42	15:43	15:44	15:45	15:46	15:47	15:48	15:49	15:50	15:51		Mamoru (hutae)	Memory (pyres)		15:39	15:40	15:41	15:42	15:43	15:44	15:45	15:46	15:47	
Poo	ds																											
	Name	Name					Labels					Node	Node			Status			Restarts			CPU Usage (cores)			Memory Usage (bytes)			
0	deepstac	deepstack-deployment-588947cff9-tljll				2	app: deepstack pod-template-hash: 588947cff9					borea	boreas			Terminating			0				57.00m			877.10Mi		
0	deepstac	deepstack-deployment-588947cff9-8zwqp					ipp: deeps	epstack pod-template-hash: 588947cff9			chrone	chronos			Terminating			0			54.00m			876.63Mi				
0	deepstac	deepstack-deployment-588947cff9-bg6kf					ipp: deeps	tack	ack pod-template-hash: 588947cff9				apollo			Terminating			0			scem			882.09Mi			
0	deepstac	deepstack-deployment-588947cff9-jj4fv					ipp: deeps	pstack pod-template-hash: 588947cff9					boreas			Running			0			60.00m			879.04Mi			
0	deepstac	deepstack-deployment-588947cff9-6trs9					app: deepstack pod-template-hash: 588947cff9					apollo	apollo			Terminating			0			savam			879.20Mi			
0	deepstac	deepstack-deployment-588947cff9-2jwp5			8	ipp: deeps	deepstack pod-template-hash: 588947cff9				chron	chronos			Terminating		0			65.00m			875.09Mi					
0	deepstac	deepstack-deployment-588947cff9-II7g4				ipp: deeps	itack	ack pod-template-hash: 588947cff9				apollo			Terminating			0			57.50m			869.40Mi				
0	deepstac	deepstack-deployment-588947cff9-62dlp				ipp: deeps	tack	k pod-template-hash: 588947cff9				chronos			Running			0			57.00m			873.11Mi				
0	deepstac	k-deploym	ent-58894	7cff9-5gh	iq.		ipp: deeps	tack	pod-templ	ate-hash:	588947cff9	borea	s		Run	nning			0				6.00m		86	8.07Mi		