
Tetra project OpenCloudEdge

Short tutorial OpenStack
ANDREA PELLICCIA, LUCA GATTOBIGIO

28/11/2019

Abstract

The main purpose of this presentation is to show how Openstack's core services work.

It uses easy-to-understand examples, such as creating virtual networks and subnets,

launching instances and attaching volumes to them, and using telemetry tools for

autoscaling resources.

Outline

1. Openstack configuration

2. Creating virtual networks via GUI (Horizon)

3. Launch an instance

4. Attach volume

5. Associate a floating IP

6. Autoscaling simulation

1. Openstack configuration:

 CONTROLLER Node

 COMPUTE Node

 STORAGE Node

2. Creating virtual networks via GUI (Horizon, Neutron, Keystone)

The only core service required by the Horizon dashboard is the Keystone Identity service. The

Horizon dashboard can be used in combination with other services, such as the Image,

Compute, and Networking services.

Figure 2.1 Horizon login page

The Horizon dashboard can be used to manage services like the Neutron networking service.

Horizon allows creating virtual networks and subnets in Neutron by setting the name of the

reference project, the network type, and the IP subnet ranges. This among others allows

creating private networks used for internal communication between the compute instances of

NOVA Compute

NEUTRON Networking agents

CEILOMETER Telemetry agents

KEYSTONE Identity service

HORIZON Dashboard

NOVA Compute conductor, API

GLANCE Image service

NEUTRON Networking

CINDER Block storage scheduler

CEILOMETER Telemetry

AODH Alarm

HEAT Orchestration

CINDER Block storage compute

a certain project or user. It also allows specifying the external, physical network referred to as

the provider network. Upon creating a virtual network, Neutron will provision a Dynamic Host

Configuration Protocol (DHCP) server to distribute IP addresses within the configured subnet

ranges inside said virtual network.

Figure 2.2 Create Network

Interconnection between virtual and physical networks, such as for example between two

virtual private networks and the physical provider network, is provided by virtual routers. These

virtual routers can perform tasks like IPv4 Source/Destination Network Address Translation

(SNAT/DNAT). Routers require a (virtual) network interface on each of the networks to be

connected.

Figure 2.3 Create router

The network topology presented in Figure 2.4 indicates the interconnection between an

external provider network named “public” and the virtual networks “private” and “private2” via

the Neutron router named “router1”. The corresponding IP addresses or the router interfaces

and subnets of all three networks are visible.

Figure 2.4 Network topology

3. Launching an instance (Horizon, Neutron, Nova, Glance, Keystone)

Figure 3.1 Launching an instance

The Horizon dashboard allows the creation of compute instances via a stepwise approach.

This includes the required specification of the instance name and quantity (Figure 3.1), Glance

image or volume to be deployed (Figure 3.2), virtual machine flavor to specify vCPU and RAM

configuration (Figure 3.3), and network selection (Figure 3.4). It also allows setting optional

configuration fields such as security groups which are used as firewall rules, etc.

Figure 3.2 Launching an instance – image selection

Figure 3.3 Launching an instance – flavor selection

Figure 3.4 Launching an instance – network selection

After creating and launching the image, it is possible to open a remote console with the

instance from within the Horizon dashboard.

4. Attach persistent storage volumes (Horizon, Nova, Cinder, Keystone)

The Glance image used for deploying instances provides non-persistent storage. Persistent

data storage can be provided by attaching a Cinder block storage volume on which the data

can be stored. The Horizon dashboard indicates which volumes are attached to which

instances.

Figure 4.1 Attaching a storage volume to an instance

5. Assigning floating IP addresses (Horizon, Nova, Neutron, Keystone)

Floating IP addresses enable reaching OpenStack instances connected to a virtual private

network from the external network, using IPv4. Neutron's virtual routers provide Destination

Network Address Translation (DNAT) between the assigned floating IP address and the

instance’s IP address on the virtual private network.

Floating IP addresses can be associated and dissociated at any time. The example provided

in Figure 5.1 shows the assignment of floating IP 192.168.1.51 to IP 148.106.27.58 in a private

subnet.

Note that for most server applications the floating IP (192.168.1.51) should be an Internet

routable IPv4 address. However, this is not possible at time of testing with our current physical

network setup but will be re-evaluated once our server infrastructure is in place.

Figure 5.1 Floating IP associations

6. Autoscaling test (Horizon, Heat, Ceilometer, Aodh, Nova, Glance,

Neutron, Keystone)

In this section we provide an autoscaling example using the OpenStack Heat orchestration

service. The example shows OpenStack's ability to deal with certain situations by performing

an action on alarm triggers. In this case, it shows the capability to dynamically scale resources

based on the workload of a fictitious server.

The following resources are created through the configuration file autoscaling-group.yml:

- Private virtual network with subnet 10.0.20.0/24 in which the instances will be created.

- Router for combining the created private network with the cloud infrastructure’s provider

network.

- Security group for specifying firewall rules.

- Autoscaling group. This specifies the resources to be scaled with another separate

template, which passes the necessary parameters and metadata to be used to find the

metrics via Ceilometer and Aodh, as well as the minimum and maximum number of

instances to be created.

A "nested stack" has been used to simplify the template. By doing so, one can easily define

the set of resources to be scaled separately by providing a separate template.

- Two alarms which monitor the metric cpu_util of all resources containing the

"server_group" metadata, as specified by the autoscaling group above. These alarms alert

the respective resources to which the scale-up and scale-down task is assigned.

- Two Heat resources of the ScalingPolicy type, which have the task of scaling the

resources based on the respective alarms associated with them.

Figure 6.1 Stack topology

Figure 6.1 shows the initial situation in which one server instance is operational.

Figure 6.2 Alarm list

After the initial data collection phase, it is possible to check the configured alarms, as is

depicted in Figure 6.2.

By manually causing a high load on the compute instance for a period of time, one can verify

that the “autocale-stack-cpu_alarm_high” alarm is triggered and that the Heat orchestrator

launches an additional instance to increase the available resources. This process is depicted

in Figure 6.3.

This process continues until the maximum number of configured instances is reached, or until

the CPU usage of these instances drops below a set threshold.

Figure 6.3 Automatic scale-up

When the CPU load of these instances drops below a minimum threshold, one can observe

how some instances are removed to release resources that are no longer needed.

