VRIJE
UNIVERSITEIT
BRUSSEL

3RD VVLAIO TETRA OPENCLOUDEDGE USER MEETING

OPENSTACK, TERRAFORM AND SERVERLESS COMPUTING

An Braeken, Kris Steenhaut, Steffen Thielemans, Luca Gattobigio, Priscilla Benedetti, Ruben De Smet

4 February 2021

- Project announcements

- Virtualized and Containerized workloads

— Deploying OpenStack infrastructure with Kolla-Ansible

- GPGPU and initial findings on OpenStack GPU passthrough

— Automating cloud image creation with Packer

- Terraform as cloud-agnostic way of specifying Infrastructure as Code
— Serverless computing and Lightweight virtualization with OpenFAAS

— Conclusions, Future Work and Q&A

PROJECT ANNOUNCEMENTS

« TETRA OpenCloudEdge project has been extended by 3 months
- New deadline: 31 January 2022

« New members: A XS ‘ GUARD

INTERNET SECURITY SOLUTIONS

Cl.umency

OUR CURRENT INFRASTRUCTURE

WHAT’'S NEW?

3x HPE DL325 genl10

- AMD EPYC 7302p 16 core processor, 64 GB RAM
Ceph mixed HDD/SSD distributed storage

- AMD Radeon Pro W5500 GPU

%

- CentOS 8.3 as operating system 4, =

L

« Kubernetes (+- production ready) & OpenStack (still under evaluation)

= = openstack.

kubernetes

- Project announcements

- Virtualized and Containerized workloads

— Deploying OpenStack infrastructure with Kolla-Ansible

- GPGPU and initial findings on OpenStack GPU passthrough

— Automating cloud image creation with Packer

- Terraform as cloud-agnostic way of specifying Infrastructure as Code
— Serverless computing and Lightweight virtualization with OpenFAAS

— Conclusions, Future Work and Q&A

VIRTUALIZED AND CONTAINERIZED WORKLOADS

THE NEXT GENERATION OF CLOUD COMPUTING

» Shift from monolithic applications towards microservices

]
| I
: :
| I
| I
' ! MICROSERVICE
: BUSINESS :
| LOGIC l

» Shift from virtual machines towards containers

» Docker Containerization + .* C 3
» Kubernetes Orchestration

« Details in our previous Opencloudedge user meeting dOC er kU bernetes

6

VIRTUALIZED AND CONTAINERIZED WORKLOADS

WHAT ARE THE MAIN DIFFERENCES

Bins/Lib

Container Engine
I

Operating System

@ Infrastructure @ Infrastructure

Virtualization Containerization

» No more guest OS
» Reduced overhead
» Faster startup

- Improved elastic scaling

» Hardware level Virtualization » Shared operating system kernel

» Guest OS’s completely isolated » Isolation via namespaces & cgroups

VIRTUALIZED AND CONTAINERIZED WORKLOADS

WHICH ONE SUITS MY TYPE OF APPLICATION?

There is no distinct answer... It depends (among others) on:

» Design of the application

» Large monolithic - virtual machines

» Microservices - containers

» Application longevity
» Stateful & persistent apps - virtual machines +)

» Stateless & short-lived apps - containers

» Scalability - containers
» Isolation requirements - virtual machines
» Application compatibility - virtual machines (e.g. windows-only application)

www.redhat.com/en/topics/containers/containers-vs-vms

- Project announcements

- Virtualized and Containerized workloads

- Deploying OpenStack infrastructure with Kolla-Ansible

— GPGPU and initial findings on OpenStack GPU passthrough

— Automating cloud image creation with Packer

- Terraform as cloud-agnostic way of specifying Infrastructure as Code
— Serverless computing and Lightweight virtualization with OpenFAAS

— Conclusions, Future Work and Q&A

DEPLOYING OPENSTACK INFRASTRUCTURE

WHICH SERVICES ARE DEPLOYED AND/OR UTILIZED

OPENSTACK
—

CLIENT TOOLS —— [WEBFRONTEND ——————— &= APIPROXIES

—me
OpenStackClient OPERATIONS TOOLING
: L3} WORKLOAD PROVISIONING %> APPLICATION LIFECYCLE ————— 4 ORCHESTRATION

— (@) MONITORING SERVICES —

10

Magnum Trove Murano Freezer mMistral Aodh
— aw .
Sahara Solum Masakari Senlin Zagar Blazar
Python SDK Monasca Panko
&= COMPUTE | — @ RESOURCE OPTIMIZATION —
N .
Watcher Vitrage
Nova Zun Qinling
INTEGRATION ENABLERS

— [ihal) BILLING / BUSINESS LOGIC —

— ﬁm. CONTAINER SERVICES — .3!{. NETWORKING —— 8 Il HARDWARE LIFECYCLE — & STORAGE ———— . .
= Adjutant CloudKitty
Kuryr | = [ons [5ARE METAL]
R 7> Neutro Octavia Designate Ironic Cyborg Swift Cinder Manila — |§ TESTING / BENCHMARK —
I8! NFV
Tempest Patrole
Tacker

@B SHARED SERVICES Rally

Barbican Searchlight Karbor

IC

LIFECYCLE MANAGEMENT

P DEPLOYMENT / LIFECYCLE TOOLS ¥4 PACKAGING RECIPES FOR...

Kolla-Ansiblef] OpenStack-Charms TripleO Bifrost Kayobe RPM Puppet
upe

-Helm OpenStack-Ansible OpenStack-Chef Containers (LOCI, Kolla)

Version 2020.07.01 s openstack. 10

DEPLOYING OPENSTACK INFRASTRUCTURE

KOLLA-ANSIBLE

p DEPLOYMENT / LIFECYCLE TOOLS

| KOLLA-ANSIBLE |
Kolla-Ansible] OpenStack-Charms TripleO Bifrost Kayobe

OpenStack-Helm OpenStack-Ansible OpenStack-Chef

Kolla

Containerized versions of Openstack components KOLLA *dOCkQ(

Easy to dIStrIbUte, deploy and upgrade an OpenStack Community Project
Largely independent of host OS configuration

« Ansible
ANSIBLE
- Automated software provisioning & deployments

Kolla-Ansible deployment scripts

11

DEPLOYING OPENSTACK INFRASTRUCTURE

KOLLA-ANSIBLE RELEASES

« OpenStack Ussuri (05/2020) & Victoria (10/2020) releases
CentOS / RHEL 8 p |
Debian 10 (Buster) 4@ - ‘ o @
Ubuntu 20.04 (Focal Fossa)

« Kolla / Kolla-Ansible version releases trail by 1 — 2 months

KOLLA

... Which is not a bad thing for stability e

« Out of the box configuration includes essential components & default configuration

Highly customizable component-specific configurations
Additional components can be enabled for deployment

12

DEPLOYING OPENSTACK INFRASTRUCTURE

KOLLA

an OpenStack Community Project

« OpenStack Kolla = Docker containers

* kolla-ansible -1 multinode bootstrap-servers

Install and configure prerequisites (e.g. Docker)

« Docker already installed & configured for our Kubernetes cluster

Existing Kubernetes-based Docker config overwritten
Incompatible cgroup drivers in use: cgroupfs <> systemd
Worked, until out of memory issues occurred

Solution:

« Kolla-ansible with docker custom config environment variable in json file

kRolla-ansible -1 multinode bootstrap-servers -e "cgroups.json"” 13

DEPLOYING OPENSTACK INFRASTRUCTURE

KOLLA-ANSIBLE — UPGRADE USSURI - VICTORIA

Seamless migration from OpenStack Ussuri to Victoria

pip install --upgrade kolla-ansible
— Migrate changes in inventory & globals.yml file

— Generate passwords & migrate with existing passwords

kolla-genpwd & kolla-mergepwd

kolla-ansible pull fetch new Kolla docker images

kolla-ansible upgrade upgrade OpenStack deployment

KOLLA

an OpenStack Community Project

14

- Project announcements

- Virtualized and Containerized workloads

— Deploying OpenStack infrastructure with Kolla-Ansible

- GPGPU and initial findings on OpenStack GPU passthrough

— Automating cloud image creation with Packer

- Terraform as cloud-agnostic way of specifying Infrastructure as Code
— Serverless computing and Lightweight virtualization with OpenFAAS

— Conclusions, Future Work and Q&A

15

GENERAL PURPOSE COMPUTING ON GPU (GPGPU

For research:
 On cryptography: parallelized proof verification

« On machine learning: e.g. computer vision, neural networks

For OpenCloudEdge demos:
« Remote workstation for mechanics and robotics department

« Scalability over heterogeneous brands and types of GPUs

16

CURRENT AND FUTURE INFRASTRUCTURE

GENERAL PURPOSE COMPUTING ON GPU (GPGPU
 CURRENT AND FUTURE INFRASTRUCTURE

|
:
Our GPGPU cluster contains: ! (a1 |
- +
« Three EPYC servers with AMD WX5500 ,
1 NEW EPYC SERVER
A One Old DeSktOp ® Wlth Nvidia RTX 4000 :
1 NEw GPUS
« The RTX 4000 will move to a new EPYC server .
: | o
1
1

1&ad

3 x AMD WX5500

17

OPENSTACK NOVA GPU PASSTHROUGH
| WHAT IS GPU PASSTHROUGH

WHAT IS GPU PASSTHROUGH

What?

« Passthrough of physical GPU (or other PCI device) to virtual machine

Directly coupled and exclusive access between VM and device

Why?

* Allows a cloud tenant to leverage GPGPU acceleration

Virtual machine

18

BRIEF PASSTHROUGH CONFIGURATION STEPS

OPENSTACK NOVA GPU PASSTHROUGH
| BRIEF PASSTHROUGH CONFIGURATION STEPS _

« Enable Input/Output Memory Management Unit (I/O0 MMU)

Essential for enabling PCI passthrough to VMs

« Set up kernel drivers

Disable (blacklist) amdgpu kernel drivers |

b
Configure vfio-pci kernel driver for passing through GPU’s vendor — product ID
(Permanently) load vfio-pci kernel driver

« Configure OpenStack Nova

Nova-compute (specific machine) . | "
- Whitelist vendor:product ID for passthrough Virtual machine

Nova-api (all controller nodes)

Provide an alias (e.g. W5500) to the whitelisted vendor - product ID
Nova-scheduler (all controller nodes)

Enable PciPassthroughfFilter to allow filtering where to schedule a GPU workload

19

OPENSTACK NOVA GPU PASSTHROUGH

LAUNCHING OPENSTACK INSTANCES WITH GPU / PCI PASSTHROUGH

* Create OpenStack Flavor(s)

Custom metadata: "pci_passthrough:alias"="W5500:1"
The :1 determines a single GPU should be passed through

» The corresponding drivers of the passed through GPU are required

No GPU drivers present in Linux cloud-based images
Corresponding CUDA and/or openCL libraries also essential

« Manual GPU driver install

-
AMDGPU Linux drivers for our Radeon Pro W5500 obsoleted ... OpenCL workload
AMD’s Radeon Open Compute (ROCm) drivers do work (but bloated) Virtual machine

« Success!

Validated with OpenCL workload

20

OPENSTACK NOVA GPU PASSTHROUGH

INITIAL FINDINGS ON OPENSTACK GPU PASSTHROUGH

OpenStack Nova (ibvirty GPU passthrough works on the first attempt

However, failure on all subsequent attempts

« Known bug in AMD firmware and/or drivers bricks the GPU at VM shutdown

The GPU is not correctly powered down / reset / re-initialized

« For now, only solution is to reboot the physical machine

Absolutely unacceptable for cloud infrastructure

« github.com/gnif/vendor-reset might provide a future solution

Tested but no success; AMD Radeon Pro W5500 is currently not supported

Note: This is not an OpenStack related issue!

OpenCL workload

Virtual machine

21

https://github.com/gnif/vendor-reset

OPENSTACK NOVA GPU PASSTHROUGH

CONCLUSION ON OUR GPU PASSTHROUGH FINDINGS

« Successful GPU passthrough with OpenStack Nova / libvirt

« Game breaking reset bug on the AMD Radeon Pro W5500

Unusable for cloud-based VM PCI passthrough in its current state

No issues for Kubernetes container-based “"GPU passthrough”
- Host always remains in control of GPU, no reinitializations/resets

* Future work: Nvidia Quadro RTX 4000

Will be validated using a different server or workstation

- Project announcements

- Virtualized and Containerized workloads

— Deploying OpenStack infrastructure with Kolla-Ansible

- GPGPU and initial findings on OpenStack GPU passthrough

- Automating cloud image creation with Packer

- Terraform as cloud-agnostic way of specifying Infrastructure as Code
— Serverless computing and Lightweight virtualization with OpenFAAS

— Conclusions, Future Work and Q&A

23

AUTOMATING VM IMAGE GENERATION

HASHICORP PACKER AS MULTI-PLATFORM IMAGE GENERATION TOOL

il Packer

Cloud deployments benefit from pre-baked images (e.g. with integrated GPU drivers)

Creating & modifying VM/container images is a repetitive and time-consuming task

There is a need for automated image creation

e.g. Triggered each time a new GIT commit is successfully built and ready for deployment (CI/CD)

Hashicorp packer is a multi-platform tool which provides this automation

Packer binary

Image build template in Hashicorp Configuration Language (HCL)
Builders EC2, Azure, Google Cloud, DigitalOcean, Docker, OpenStack, QEMU, VMware, ...
Provisioners File, Shell, Ansible, Chef, Puppet, ...

24

) Packer

PACKER IMAGE BUILD SCRIPT FOR CENTOS wiTH AMD W5500 GPU DRIVERS

"builders™: [

{

"type": "openstack",

"image name": "Cent0S-8.3-GPU",
"source_image_name": "Cent05-8.3",
"flavor": "ml.gpu”,
"ssh_username": "centos",

"floating_ip_network”: "d3871423-5949-4aea-8b20-9a7bc5F2dbbd" OpenStack environment variables already loaded

}
1,

BT <] packer build centos-gpu.hcl

“type”: "file”, openstack: verified flavor. ID: 2
"source": "amdgpu-pro-20.10-1101037-rhel-8.1.tar.xz", openstack: Creating temporary keypair: packer_60lafe41-1c58-176c-0aab-ee8fa3eeafod ...
"destination": "~/amdgpu-pro-20.10-1101037-rhel-8.1.tar.xz" openstack: Created temporary keypair: packer_60lafe41-1c58-176c-0aab-ee8fa3eeaf9d
openstack: Found Image ID: OcdOaOa5-efaa-4a6a-bf2c-ch049fce055¢
openstack: Launching server...
openstack: Launching server...
"type": "shell", openstack: server ID: 0912c28b-a2ab-4216-bae0-f02960897805
"inline": [openstack: waiting for server to become ready...
t o openstack: Creating floating IP using network d3871423-5949-4aea-8b20-9a7bc5f2dbbd ...
tar -Jxvf amdgpu-pro-20.10-1101037-rhel-8.1.tar. openstack: created floating IP: '729fbcca-d90e-458d-aefc-7bfe50348ec7' (10.20.28.206)

"sudo dnf install -y epel-release”, openstack: Associating floating IP '729fbcca-d90e-458d-aefc-7bfe50348ec7' (10.20.28.206) with ins

openstack: Added floating IP '729fbcca-d90e-458d-aefc-7bfe50348ec7' (10.20.28.206) to instance!
openstack: Using ssh communicator to connect: 10.20.28.206
openstack: waiting for SSH to become available...

1 openstack: connected to SSH!
"expect_disconnect": true, openstack: Uploading amdgpu-pro-20.10-1101037-rhel-8.1.tar.xz => ~/amdgpu-pro-20.10-1101037-rhel-
" _ft n. v3gs openstack: Provisioning with shell script: c:\Users\steffen\AppData\Local\Temp\packer-shel1703998
pause_atrter : s openstack: amdgpu-pro-20.10-1101037-rhel-8.1/
openstack: amdgpu-pro-20.10-1101037-rhel-8.1/repodata/
openstack: amdgpu-pro-20.10-1101037-rhel1-8.1/repodata/76fc93348700373562db7c110acfflfb0ac624d6bbc

"sudo dnf update -y",
"sudo reboot™

25

- Project announcements

- Virtualized and Containerized workloads

— Deploying OpenStack infrastructure with Kolla-Ansible

- GPGPU and initial findings on OpenStack GPU passthrough

— Automating cloud image creation with Packer

- Terraform as cloud-agnostic way of specifying Infrastructure as Code
— Serverless computing and Lightweight virtualization with OpenFAAS

— Conclusions, Future Work and Q&A

26

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
. HashiCorp
V¥ Terraform

Write, Plan, and Create Infrastructure as Code
« Opensource Infrastructure-as-Code software tool

- Efficient deployment, management and automation

« Compatible with 500+ providers (public/private clouds, network appliances,
Platform as a Service, Software as a Service)

« Constantly updated and supported by Hashicorp and the community

« Part of Hashicorp's “"Cloud-oriented” suite of tools

27

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
ashicor

.i’ Terraform

Write, Plan, and Create Infrastructure as Code

« One tool to manage any resource, regardless of where

« Excellent to handle multi-cloud / hybrid cloud scenarios, but not only

 Deploy, manage and update with Infrastructure as Code

28

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM

INFRASTRUCTURE-AS-CODE (IaC)

o

Adminkstraor

securfy groug

[. r - ezl MySOL
o= —J--r»
e l fmezon EC2 WySCL canase
X sacurly groun) securfy group Securfy grouD
o T
— "‘_'{ TP Cumnound

Mlatwork aidress TarElan (AT

SacUrRy goup

CME pulic subnet

vy

A

Fromf-end pricaie subnet -/.

M

Back-end priate submet

s

Infrastructure example

)

Configuration file example

29

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM

Hashicorp Configuration Language (HCL)

« Makes Terraform "cloud-agnostic"

« Easy to learn

« Same language for most of the Hashicorp tools

« Tools to convert other languages into HCL (json, java, Typescript)

30

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM

Terraform Architecture: Core and providers

TERRAFORM AWS Cloud

AWS Provider

OpenStack OpenStack Cloud

Provider

K8s Provider K8s Cluster

Configuration
File

31

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM

Terraform core: Main commands

« INIT
Initialize Terraform and look for providers

- PLAN
Overview of what to execute to realize what is described in the
configuration files

- APPLY
Perform the operations as planned

- DESTROY
Deallocate and destroy all the resources

32

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM

Terraform CLA and Cloud Application: Two different approaches to launch Terraform commands

vuB v~ Workspaces Modules Settings HashiCorp Cloud Platform ® B

VUB / Workspaces / tfc-guide-example / Runs / run-PKzrQ3qDSSMP7Sts

tfc-guide-example © Runs States Variables Settings v

terraform@TF: ~/terraform-docker-demo

S terraform init

Initializing the backend...

Queued manually in Terraform Cloud CURRENT
Initializing provider plugins...
- Reusing previous version of terraform-providers/docker from the dependency lock file luca-gatto triggered a run from Terraform Cloud Ul a few seconds ago Run Details
- Installing terraform-providers/docker v2.7.2...
- Installed terraform-providers/docker v2.7.2 (signed by HashiCorp)
@ Plan running & few seconds ago N

Warning: Additional provider information from registry Started 2 few seconds ago

The.remote reglstryireturned warmng; for B viewrawlog Followinglog | T Top || | Bottom || zz Expand | ,” Fullscreen
registry.terraform.io/terraform-providers/docker:

- For users on Terraform 0.13 or greater, this provider has moved to
kreuzwerker /docker. Please update your source in required_providers.

@ Apply pending

Terraform Command Line Terraform Cloud
Interface (CLI)

33

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM

Deploy a simple infrastructure on OpenStack and AWS

PRIVATE NETWORK

. Create a private network
. Define a subnet

. Run a VM

. Connect it to the subnet
. Create a block storage

(oo]
. Attach it to the VM &R 5 ocK
STORAGE

OPENSTACK/AWS
CLOUD 34

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM

terraform {
required providers {
openstack = {

source = "terraform-provider-openstack/opensta

resource "openstack networking subnet v2" "tf subnet" {
name = "tf subnet
network_id = openstack networking network v2.tf network.id
cidr = "192.168.150.0/24

}

name =
image name =
flavor name = "ml.tiny

network {name = openstack networking network v2.tf network.name}

nstack blockstorage volume v2"
volume

resource "openstack compute_volume_attach_v2" "tf_attach" [{
instance id = openstack compute instance v2.tf instance.id
volume id = openstack blockstorage volume v2.tf volume.id

49 [

AWS configuration file

terraform {
required providers {
aws = {

source = "hashicorp/aws"

'aws" {region = "eu-west-3"}

resource "aws vpc tf
tags = {Name = "tf ne
cidr block = "192.16
I

resource "aws
tags = {Name = "tf subnet"}
vpc_id = aws_vpc.tf_network.id
cidr block = "192.168.150 '
availability zone =

}

resource "aws
tags = {Nar
ami = "ami-
instance type = "t2Z.micro
subnet id = aws subnet.tf subnet.id
availability zone = "eu-west-3a

]_

resource "aws ebs volume" "tf volume" {
tags = {Name tf wvolume"}
size = 1
availability zone = "eu-west-3a

}

resource "aws_volume_attachment" "tf_attach
volume id = aws ebs volume.tf volume.id
instance id = aws_instance.tf_instance.id
device name '/dev/sdh"

}

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM

Terraform for our infrastructure and
future growth (Hybrid cloud/Multi-cloud)

Consul, Vault, Nomad (to be integrated
with Terraform)

Use cases

36

- Project announcements

- Virtualized and Containerized workloads

— Deploying OpenStack infrastructure with Kolla-Ansible

- GPGPU and initial findings on OpenStack GPU passthrough

— Automating cloud image creation with Packer

- Terraform as cloud-agnostic way of specifying Infrastructure as Code

- Serverless computing and Lightweight virtualization with OpenFAAS

— Conclusions, Future Work and Q&A

37

SERVERLESS COMPUTING WITH OPENFAAS

This topic is provided in a separate presentation

38

- Project announcements

- Virtualized and Containerized workloads

— GPGPU and initial findings on OpenStack GPU passthrough

— Initial findings on OpenStack GPU passthrough

— Automating cloud image creation with Packer

- Terraform as cloud-agnostic way of specifying Infrastructure as Code
— Serverless computing and Lightweight virtualization with OpenFAAS

— Conclusions, Future Work and Q&A

39

CONCLUSIONS, FUTURE WORK AND Q&A

Our on-premise OpenStack and Kubernetes infrastructures are operational & maturing

Currently working on providing & consuming GPU accelerated features

Hybrid/multi-cloud deployments using Terraform

This will be further extended into a connected hybrid cloud solution

Still determining our roadmap regarding edge computing

We consider the edge as devices with restricted resources (e.g. Raspberry Pi as IoT gateway)
Likely will feature a ‘lightweight’ containerized (Kubernetes) or serverless (openFaaS) solution

We are always open to suggestions regarding use-cases and desired future work

40

