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• TETRA OpenCloudEdge project has been extended by 3 months

• New deadline: 31 January 2022

• New members:

PROJECT ANNOUNCEMENTS
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WHAT’S NEW?

• 3x HPE DL325 gen10

• AMD EPYC 7302p 16 core processor, 64 GB RAM

• Ceph mixed HDD/SSD distributed storage

• AMD Radeon Pro W5500 GPU

• CentOS 8.3 as operating system

• Kubernetes (+- production ready) & OpenStack (still under evaluation)

OUR CURRENT INFRASTRUCTURE
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►Shift from monolithic applications towards microservices

►Shift from virtual machines towards containers

►Docker Containerization +

►Kubernetes Orchestration
• Details in our previous Opencloudedge user meeting

THE NEXT GENERATION OF CLOUD COMPUTING

VIRTUALIZED AND CONTAINERIZED WORKLOADS
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WHAT ARE THE MAIN DIFFERENCES

VIRTUALIZED AND CONTAINERIZED WORKLOADS

► Shared operating system kernel

►Isolation via namespaces & cgroups

►No more guest OS 

►Reduced overhead

► Faster startup

→ Improved elastic scaling

► Hardware level Virtualization

►Guest OS’s completely isolated

Virtualization Containerization
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There is no distinct answer… It depends (among others) on:

► Design of the application

► Large monolithic → virtual machines

►Microservices → containers

► Application longevity

►Stateful & persistent apps → virtual machines (*)

►Stateless & short-lived apps → containers

► Scalability → containers

► Isolation requirements → virtual machines

► Application compatibility → virtual machines   (e.g. windows-only application)

www.redhat.com/en/topics/containers/containers-vs-vms

WHICH ONE SUITS MY TYPE OF APPLICATION?

VIRTUALIZED AND CONTAINERIZED WORKLOADS
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WHICH SERVICES ARE DEPLOYED AND/OR UTILIZED

DEPLOYING OPENSTACK INFRASTRUCTURE
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KOLLA-ANSIBLE

• Kolla

• Containerized versions of Openstack components

• Easy to distribute, deploy and upgrade

• Largely independent of host OS configuration

• Ansible

• Automated software provisioning & deployments

• Kolla-Ansible deployment scripts

DEPLOYING OPENSTACK INFRASTRUCTURE
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KOLLA-ANSIBLE RELEASES

• OpenStack Ussuri (05/2020) & Victoria (10/2020) releases

• CentOS / RHEL 8

• Debian 10 (Buster)

• Ubuntu 20.04 (Focal Fossa)

• Kolla / Kolla-Ansible version releases trail by 1 – 2 months

• … Which is not a bad thing for stability

• Out of the box configuration includes essential components & default configuration

• Highly customizable component-specific configurations

• Additional components can be enabled for deployment

DEPLOYING OPENSTACK INFRASTRUCTURE
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KOLLA-ANSIBLE – DEPLOYMENT ISSUES

• OpenStack Kolla = Docker containers

• kolla-ansible –i multinode bootstrap-servers

• Install and configure prerequisites (e.g. Docker)

• Docker already installed & configured for our Kubernetes cluster

• Existing Kubernetes-based Docker config overwritten

• Incompatible cgroup drivers in use: cgroupfs ↔ systemd

• Worked, until out of memory issues occurred

Solution:

• Kolla-ansible with docker_custom_config environment variable in json file

• kolla-ansible –i multinode bootstrap-servers –e "cgroups.json"

DEPLOYING OPENSTACK INFRASTRUCTURE
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KOLLA-ANSIBLE – UPGRADE USSURI → VICTORIA

Seamless migration from OpenStack Ussuri to Victoria

pip install --upgrade kolla-ansible

→ Migrate changes in inventory & globals.yml file

→ Generate passwords & migrate with existing passwords

• kolla-genpwd & kolla-mergepwd

kolla-ansible pull fetch new Kolla docker images

kolla-ansible upgrade upgrade OpenStack deployment

DEPLOYING OPENSTACK INFRASTRUCTURE
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WHY?

For research:

• On cryptography: parallelized proof verification

• On machine learning: e.g. computer vision, neural networks

For OpenCloudEdge demos:

• Remote workstation for mechanics and robotics department

• Scalability over heterogeneous brands and types of GPUs

GENERAL PURPOSE COMPUTING ON GPU (GPGPU) 
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CURRENT AND FUTURE INFRASTRUCTURE

GENERAL PURPOSE COMPUTING ON GPU (GPGPU) 

Our GPGPU cluster contains:

• Three EPYC servers with AMD WX5500

• One Old Desktop ® with Nvidia RTX 4000

• The RTX 4000 will move to a new EPYC server



WHAT IS GPU PASSTHROUGH

What?

• Passthrough of physical GPU (or other PCI device) to virtual machine

• Directly coupled and exclusive access between VM and device

Why?

• Allows a cloud tenant to leverage GPGPU acceleration

OPENSTACK NOVA GPU PASSTHROUGH

Virtual machine
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BRIEF PASSTHROUGH CONFIGURATION STEPS

• Enable Input/Output Memory Management Unit (I/O MMU)

• Essential for enabling PCI passthrough to VMs

• Set up kernel drivers

• Disable (blacklist) amdgpu kernel drivers

• Configure vfio-pci kernel driver for passing through GPU’s vendor – product ID

• (Permanently) load vfio-pci kernel driver

• Configure OpenStack Nova

• Nova-compute (specific machine)

• Whitelist vendor:product ID for passthrough

• Nova-api (all controller nodes)

• Provide an alias (e.g. W5500) to the whitelisted vendor – product ID

• Nova-scheduler (all controller nodes)

• Enable PciPassthroughFilter to allow filtering where to schedule a GPU workload

OPENSTACK NOVA GPU PASSTHROUGH

Virtual machine
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LAUNCHING OPENSTACK INSTANCES WITH GPU / PCI PASSTHROUGH

• Create OpenStack Flavor(s)

• Custom metadata: "pci_passthrough:alias"="W5500:1"

• The :1 determines a single GPU should be passed through

• The corresponding drivers of the passed through GPU are required

• No GPU drivers present in Linux cloud-based images 

• Corresponding CUDA and/or openCL libraries also essential

• Manual GPU driver install

• AMDGPU Linux drivers for our Radeon Pro W5500 obsoleted …

• AMD’s Radeon Open Compute (ROCm) drivers do work (but bloated)

• Success! (*)

• Validated with OpenCL workload

OPENSTACK NOVA GPU PASSTHROUGH

OpenCL workload

Virtual machine

✔
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INITIAL FINDINGS ON OPENSTACK GPU PASSTHROUGH

OpenStack Nova (libvirt) GPU passthrough works on the first attempt

However, failure on all subsequent attempts

• Known bug in AMD firmware and/or drivers bricks the GPU at VM shutdown

• The GPU is not correctly powered down / reset / re-initialized

• For now, only solution is to reboot the physical machine

• Absolutely unacceptable for cloud infrastructure

• github.com/gnif/vendor-reset might provide a future solution 

• Tested but no success; AMD Radeon Pro W5500 is currently not supported

Note: This is not an OpenStack related issue!

OPENSTACK NOVA GPU PASSTHROUGH

OpenCL workload

Virtual machine

✔X
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CONCLUSION ON OUR GPU PASSTHROUGH FINDINGS

• Successful GPU passthrough with OpenStack Nova / libvirt

• Game breaking reset bug on the AMD Radeon Pro W5500

• Unusable for cloud-based VM PCI passthrough in its current state

• No issues for Kubernetes container-based “GPU passthrough”

→ Host always remains in control of GPU, no reinitializations/resets

• Future work: Nvidia Quadro RTX 4000

• Will be validated using a different server or workstation

OPENSTACK NOVA GPU PASSTHROUGH
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HASHICORP PACKER AS MULTI-PLATFORM IMAGE GENERATION TOOL

• Cloud deployments benefit from pre-baked images (e.g. with integrated GPU drivers)

• Creating & modifying VM/container images is a repetitive and time-consuming task

• There is a need for automated image creation

• e.g. Triggered each time a new GIT commit is successfully built and ready for deployment (CI/CD)

• Hashicorp packer is a multi-platform tool which provides this automation

• Packer binary

• Image build template in Hashicorp Configuration Language (HCL)

• Builders EC2, Azure, Google Cloud, DigitalOcean, Docker, OpenStack, QEMU, VMware, …

• Provisioners File, Shell, Ansible, Chef, Puppet, …

AUTOMATING VM IMAGE GENERATION
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PACKER IMAGE BUILD SCRIPT FOR CENTOS WITH AMD W5500 GPU DRIVERS

AUTOMATING VM IMAGE GENERATION

OpenStack environment variables already loaded

packer build centos-gpu.hcl
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• Opensource Infrastructure-as-Code software tool

• Efficient deployment, management and automation

• Compatible with 500+ providers (public/private clouds, network appliances, 
Platform as a Service, Software as a Service)

• Constantly updated and supported by Hashicorp and the community

• Part of Hashicorp's “Cloud-oriented” suite of tools

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
What is Terraform?
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• One tool to manage any resource, regardless of where

• Excellent to handle multi-cloud / hybrid cloud scenarios, but not only

• Deploy, manage and update with Infrastructure as Code

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
Why Terraform?
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CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
INFRASTRUCTURE-AS-CODE (IaC)

Infrastructure example

Configuration file example 29



CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM

Hashicorp Configuration Language (HCL)

• Makes Terraform "cloud-agnostic"

• Easy to learn

• Same language for most of the Hashicorp tools

• Tools to convert other languages into HCL (json, java, Typescript)
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CORE

AWS Provider

TERRAFORM

OpenStack 
Provider

K8s Provider

...

AWS Cloud

OpenStack Cloud

K8s Cluster

...

Configuration 
File

USERS

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
Terraform Architecture: Core and providers
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• INIT
Initialize Terraform and look for providers

• PLAN
Overview of what to execute to realize what is described in the 
configuration files

• APPLY
Perform the operations as planned

• DESTROY
Deallocate and destroy all the resources

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
Terraform core: Main commands
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CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
Terraform CLA and Cloud Application: Two different approaches to launch Terraform commands

Terraform Command Line 
Interface (CLI)

Terraform Cloud
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CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
Deploy a simple infrastructure on OpenStack and AWS

OPENSTACK/AWS

CLOUD

PRIVATE NETWORK1. Create a private network

2. Define a subnet

3. Run a VM

4. Connect it to the subnet

5. Create a block storage

6. Attach it to the VM

SUBNET
VM

BLOCK
STORAGE
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CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM

OpenStack configuration file AWS configuration file 
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• Terraform for our infrastructure and 
future growth (Hybrid cloud/Multi-cloud)

• Consul, Vault, Nomad (to be integrated 
with Terraform)

• Use cases

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
Next steps
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This topic is provided in a separate presentation

SERVERLESS COMPUTING WITH OPENFAAS
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• Our on-premise OpenStack and Kubernetes infrastructures are operational & maturing

• Currently working on providing & consuming GPU accelerated features

• Hybrid/multi-cloud deployments using Terraform

• This will be further extended into a connected hybrid cloud solution

• Still determining our roadmap regarding edge computing

• We consider the edge as devices with restricted resources (e.g. Raspberry Pi as IoT gateway)

• Likely will feature a ‘lightweight’ containerized (Kubernetes) or serverless (openFaaS) solution

• We are always open to suggestions regarding use-cases and desired future work

CONCLUSIONS, FUTURE WORK AND Q&A
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