
OPENSTACK, TERRAFORM AND SERVERLESS COMPUTING

3RD VLAIO TETRA OPENCLOUDEDGE USER MEETING

An Braeken, Kris Steenhaut, Steffen Thielemans, Luca Gattobigio, Priscilla Benedetti, Ruben De Smet

4 February 2021

– Project announcements

– Virtualized and Containerized workloads

– Deploying OpenStack infrastructure with Kolla-Ansible

– GPGPU and initial findings on OpenStack GPU passthrough

– Automating cloud image creation with Packer

– Terraform as cloud-agnostic way of specifying Infrastructure as Code

– Serverless computing and Lightweight virtualization with OpenFAAS

– Conclusions, Future Work and Q&A

AGENDA

2

• TETRA OpenCloudEdge project has been extended by 3 months

• New deadline: 31 January 2022

• New members:

PROJECT ANNOUNCEMENTS

3

WHAT’S NEW?

• 3x HPE DL325 gen10

• AMD EPYC 7302p 16 core processor, 64 GB RAM

• Ceph mixed HDD/SSD distributed storage

• AMD Radeon Pro W5500 GPU

• CentOS 8.3 as operating system

• Kubernetes (+- production ready) & OpenStack (still under evaluation)

OUR CURRENT INFRASTRUCTURE

4

– Project announcements

– Virtualized and Containerized workloads

– Deploying OpenStack infrastructure with Kolla-Ansible

– GPGPU and initial findings on OpenStack GPU passthrough

– Automating cloud image creation with Packer

– Terraform as cloud-agnostic way of specifying Infrastructure as Code

– Serverless computing and Lightweight virtualization with OpenFAAS

– Conclusions, Future Work and Q&A

AGENDA

5

►Shift from monolithic applications towards microservices

►Shift from virtual machines towards containers

►Docker Containerization +

►Kubernetes Orchestration
• Details in our previous Opencloudedge user meeting

THE NEXT GENERATION OF CLOUD COMPUTING

VIRTUALIZED AND CONTAINERIZED WORKLOADS

6

WHAT ARE THE MAIN DIFFERENCES

VIRTUALIZED AND CONTAINERIZED WORKLOADS

► Shared operating system kernel

►Isolation via namespaces & cgroups

►No more guest OS

►Reduced overhead

► Faster startup

→ Improved elastic scaling

► Hardware level Virtualization

►Guest OS’s completely isolated

Virtualization Containerization

7

There is no distinct answer… It depends (among others) on:

► Design of the application

► Large monolithic → virtual machines

►Microservices → containers

► Application longevity

►Stateful & persistent apps → virtual machines (*)

►Stateless & short-lived apps → containers

► Scalability → containers

► Isolation requirements → virtual machines

► Application compatibility → virtual machines (e.g. windows-only application)

www.redhat.com/en/topics/containers/containers-vs-vms

WHICH ONE SUITS MY TYPE OF APPLICATION?

VIRTUALIZED AND CONTAINERIZED WORKLOADS

8

– Project announcements

– Virtualized and Containerized workloads

– Deploying OpenStack infrastructure with Kolla-Ansible

– GPGPU and initial findings on OpenStack GPU passthrough

– Automating cloud image creation with Packer

– Terraform as cloud-agnostic way of specifying Infrastructure as Code

– Serverless computing and Lightweight virtualization with OpenFAAS

– Conclusions, Future Work and Q&A

AGENDA

9

WHICH SERVICES ARE DEPLOYED AND/OR UTILIZED

DEPLOYING OPENSTACK INFRASTRUCTURE

10

KOLLA-ANSIBLE

• Kolla

• Containerized versions of Openstack components

• Easy to distribute, deploy and upgrade

• Largely independent of host OS configuration

• Ansible

• Automated software provisioning & deployments

• Kolla-Ansible deployment scripts

DEPLOYING OPENSTACK INFRASTRUCTURE

11

KOLLA-ANSIBLE RELEASES

• OpenStack Ussuri (05/2020) & Victoria (10/2020) releases

• CentOS / RHEL 8

• Debian 10 (Buster)

• Ubuntu 20.04 (Focal Fossa)

• Kolla / Kolla-Ansible version releases trail by 1 – 2 months

• … Which is not a bad thing for stability

• Out of the box configuration includes essential components & default configuration

• Highly customizable component-specific configurations

• Additional components can be enabled for deployment

DEPLOYING OPENSTACK INFRASTRUCTURE

12

KOLLA-ANSIBLE – DEPLOYMENT ISSUES

• OpenStack Kolla = Docker containers

• kolla-ansible –i multinode bootstrap-servers

• Install and configure prerequisites (e.g. Docker)

• Docker already installed & configured for our Kubernetes cluster

• Existing Kubernetes-based Docker config overwritten

• Incompatible cgroup drivers in use: cgroupfs ↔ systemd

• Worked, until out of memory issues occurred

Solution:

• Kolla-ansible with docker_custom_config environment variable in json file

• kolla-ansible –i multinode bootstrap-servers –e "cgroups.json"

DEPLOYING OPENSTACK INFRASTRUCTURE

13

KOLLA-ANSIBLE – UPGRADE USSURI → VICTORIA

Seamless migration from OpenStack Ussuri to Victoria

pip install --upgrade kolla-ansible

→ Migrate changes in inventory & globals.yml file

→ Generate passwords & migrate with existing passwords

• kolla-genpwd & kolla-mergepwd

kolla-ansible pull fetch new Kolla docker images

kolla-ansible upgrade upgrade OpenStack deployment

DEPLOYING OPENSTACK INFRASTRUCTURE

14

– Project announcements

– Virtualized and Containerized workloads

– Deploying OpenStack infrastructure with Kolla-Ansible

– GPGPU and initial findings on OpenStack GPU passthrough

– Automating cloud image creation with Packer

– Terraform as cloud-agnostic way of specifying Infrastructure as Code

– Serverless computing and Lightweight virtualization with OpenFAAS

– Conclusions, Future Work and Q&A

AGENDA

15

16

WHY?

For research:

• On cryptography: parallelized proof verification

• On machine learning: e.g. computer vision, neural networks

For OpenCloudEdge demos:

• Remote workstation for mechanics and robotics department

• Scalability over heterogeneous brands and types of GPUs

GENERAL PURPOSE COMPUTING ON GPU (GPGPU)

17

CURRENT AND FUTURE INFRASTRUCTURE

GENERAL PURPOSE COMPUTING ON GPU (GPGPU)

Our GPGPU cluster contains:

• Three EPYC servers with AMD WX5500

• One Old Desktop ® with Nvidia RTX 4000

• The RTX 4000 will move to a new EPYC server

WHAT IS GPU PASSTHROUGH

What?

• Passthrough of physical GPU (or other PCI device) to virtual machine

• Directly coupled and exclusive access between VM and device

Why?

• Allows a cloud tenant to leverage GPGPU acceleration

OPENSTACK NOVA GPU PASSTHROUGH

Virtual machine

18

BRIEF PASSTHROUGH CONFIGURATION STEPS

• Enable Input/Output Memory Management Unit (I/O MMU)

• Essential for enabling PCI passthrough to VMs

• Set up kernel drivers

• Disable (blacklist) amdgpu kernel drivers

• Configure vfio-pci kernel driver for passing through GPU’s vendor – product ID

• (Permanently) load vfio-pci kernel driver

• Configure OpenStack Nova

• Nova-compute (specific machine)

• Whitelist vendor:product ID for passthrough

• Nova-api (all controller nodes)

• Provide an alias (e.g. W5500) to the whitelisted vendor – product ID

• Nova-scheduler (all controller nodes)

• Enable PciPassthroughFilter to allow filtering where to schedule a GPU workload

OPENSTACK NOVA GPU PASSTHROUGH

Virtual machine

19

LAUNCHING OPENSTACK INSTANCES WITH GPU / PCI PASSTHROUGH

• Create OpenStack Flavor(s)

• Custom metadata: "pci_passthrough:alias"="W5500:1"

• The :1 determines a single GPU should be passed through

• The corresponding drivers of the passed through GPU are required

• No GPU drivers present in Linux cloud-based images

• Corresponding CUDA and/or openCL libraries also essential

• Manual GPU driver install

• AMDGPU Linux drivers for our Radeon Pro W5500 obsoleted …

• AMD’s Radeon Open Compute (ROCm) drivers do work (but bloated)

• Success! (*)

• Validated with OpenCL workload

OPENSTACK NOVA GPU PASSTHROUGH

OpenCL workload

Virtual machine

✔

20

INITIAL FINDINGS ON OPENSTACK GPU PASSTHROUGH

OpenStack Nova (libvirt) GPU passthrough works on the first attempt

However, failure on all subsequent attempts

• Known bug in AMD firmware and/or drivers bricks the GPU at VM shutdown

• The GPU is not correctly powered down / reset / re-initialized

• For now, only solution is to reboot the physical machine

• Absolutely unacceptable for cloud infrastructure

• github.com/gnif/vendor-reset might provide a future solution

• Tested but no success; AMD Radeon Pro W5500 is currently not supported

Note: This is not an OpenStack related issue!

OPENSTACK NOVA GPU PASSTHROUGH

OpenCL workload

Virtual machine

✔X

21

https://github.com/gnif/vendor-reset

CONCLUSION ON OUR GPU PASSTHROUGH FINDINGS

• Successful GPU passthrough with OpenStack Nova / libvirt

• Game breaking reset bug on the AMD Radeon Pro W5500

• Unusable for cloud-based VM PCI passthrough in its current state

• No issues for Kubernetes container-based “GPU passthrough”

→ Host always remains in control of GPU, no reinitializations/resets

• Future work: Nvidia Quadro RTX 4000

• Will be validated using a different server or workstation

OPENSTACK NOVA GPU PASSTHROUGH

22

– Project announcements

– Virtualized and Containerized workloads

– Deploying OpenStack infrastructure with Kolla-Ansible

– GPGPU and initial findings on OpenStack GPU passthrough

– Automating cloud image creation with Packer

– Terraform as cloud-agnostic way of specifying Infrastructure as Code

– Serverless computing and Lightweight virtualization with OpenFAAS

– Conclusions, Future Work and Q&A

AGENDA

23

HASHICORP PACKER AS MULTI-PLATFORM IMAGE GENERATION TOOL

• Cloud deployments benefit from pre-baked images (e.g. with integrated GPU drivers)

• Creating & modifying VM/container images is a repetitive and time-consuming task

• There is a need for automated image creation

• e.g. Triggered each time a new GIT commit is successfully built and ready for deployment (CI/CD)

• Hashicorp packer is a multi-platform tool which provides this automation

• Packer binary

• Image build template in Hashicorp Configuration Language (HCL)

• Builders EC2, Azure, Google Cloud, DigitalOcean, Docker, OpenStack, QEMU, VMware, …

• Provisioners File, Shell, Ansible, Chef, Puppet, …

AUTOMATING VM IMAGE GENERATION

24

PACKER IMAGE BUILD SCRIPT FOR CENTOS WITH AMD W5500 GPU DRIVERS

AUTOMATING VM IMAGE GENERATION

OpenStack environment variables already loaded

packer build centos-gpu.hcl

25

– Project announcements

– Virtualized and Containerized workloads

– Deploying OpenStack infrastructure with Kolla-Ansible

– GPGPU and initial findings on OpenStack GPU passthrough

– Automating cloud image creation with Packer

– Terraform as cloud-agnostic way of specifying Infrastructure as Code

– Serverless computing and Lightweight virtualization with OpenFAAS

– Conclusions, Future Work and Q&A

AGENDA

26

• Opensource Infrastructure-as-Code software tool

• Efficient deployment, management and automation

• Compatible with 500+ providers (public/private clouds, network appliances,
Platform as a Service, Software as a Service)

• Constantly updated and supported by Hashicorp and the community

• Part of Hashicorp's “Cloud-oriented” suite of tools

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
What is Terraform?

27

• One tool to manage any resource, regardless of where

• Excellent to handle multi-cloud / hybrid cloud scenarios, but not only

• Deploy, manage and update with Infrastructure as Code

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
Why Terraform?

28

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
INFRASTRUCTURE-AS-CODE (IaC)

Infrastructure example

Configuration file example 29

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM

Hashicorp Configuration Language (HCL)

• Makes Terraform "cloud-agnostic"

• Easy to learn

• Same language for most of the Hashicorp tools

• Tools to convert other languages into HCL (json, java, Typescript)

30

CORE

AWS Provider

TERRAFORM

OpenStack
Provider

K8s Provider

...

AWS Cloud

OpenStack Cloud

K8s Cluster

...

Configuration
File

USERS

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
Terraform Architecture: Core and providers

31

• INIT
Initialize Terraform and look for providers

• PLAN
Overview of what to execute to realize what is described in the
configuration files

• APPLY
Perform the operations as planned

• DESTROY
Deallocate and destroy all the resources

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
Terraform core: Main commands

32

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
Terraform CLA and Cloud Application: Two different approaches to launch Terraform commands

Terraform Command Line
Interface (CLI)

Terraform Cloud

33

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
Deploy a simple infrastructure on OpenStack and AWS

OPENSTACK/AWS

CLOUD

PRIVATE NETWORK1. Create a private network

2. Define a subnet

3. Run a VM

4. Connect it to the subnet

5. Create a block storage

6. Attach it to the VM

SUBNET
VM

BLOCK
STORAGE

34

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM

OpenStack configuration file AWS configuration file

35

• Terraform for our infrastructure and
future growth (Hybrid cloud/Multi-cloud)

• Consul, Vault, Nomad (to be integrated
with Terraform)

• Use cases

CLOUD-AGNOSTIC INFRASTRUCTURA AS CODE WITH TERRAFORM
Next steps

36

– Project announcements

– Virtualized and Containerized workloads

– Deploying OpenStack infrastructure with Kolla-Ansible

– GPGPU and initial findings on OpenStack GPU passthrough

– Automating cloud image creation with Packer

– Terraform as cloud-agnostic way of specifying Infrastructure as Code

– Serverless computing and Lightweight virtualization with OpenFAAS

– Conclusions, Future Work and Q&A

AGENDA

37

This topic is provided in a separate presentation

SERVERLESS COMPUTING WITH OPENFAAS

38

– Project announcements

– Virtualized and Containerized workloads

– GPGPU and initial findings on OpenStack GPU passthrough

– Initial findings on OpenStack GPU passthrough

– Automating cloud image creation with Packer

– Terraform as cloud-agnostic way of specifying Infrastructure as Code

– Serverless computing and Lightweight virtualization with OpenFAAS

– Conclusions, Future Work and Q&A

AGENDA

39

• Our on-premise OpenStack and Kubernetes infrastructures are operational & maturing

• Currently working on providing & consuming GPU accelerated features

• Hybrid/multi-cloud deployments using Terraform

• This will be further extended into a connected hybrid cloud solution

• Still determining our roadmap regarding edge computing

• We consider the edge as devices with restricted resources (e.g. Raspberry Pi as IoT gateway)

• Likely will feature a ‘lightweight’ containerized (Kubernetes) or serverless (openFaaS) solution

• We are always open to suggestions regarding use-cases and desired future work

CONCLUSIONS, FUTURE WORK AND Q&A

40

