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OpenCloudEdge hands-on workshops

Infrastructure changes & Host OS migrations

OpenStack version upgrades with Kolla-Ansible

Terraform & Consul

End seminar 
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Part 1: Set up & consume elementary OpenStack project environment

• Tenant network, SSH key, Deploy cloud instances from image

• Volume snapshots of modified cloud instances

• Deploy additional instances from this volume snapshot

Part 2: Set up and deploy multi-node OpenStack infrastructure using Kolla-Ansible

• OpenStack-inside-OpenStack: Deployed inside compute instances provided by OpenStack 

• Set up host machines, Ansible & Kolla-Ansible configuration

• Deploy OpenStack with Kolla containers

• Consume the OpenStack-inside-OpenStack

OPENCLOUDEDGE HANDS-ON WORKSHOPS
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Brief introduction to Docker containers

Deployment of multi-node Kubernetes environment

• Simplified testing/development with MicroK8s

Kubernetes interaction and deployments

• Kubectl and Kubernetes Dashboard

• JupyterHub from Helm package manager

• Porting containerized webapp to autonomous horizontally scalable Kubernetes deployment

OPENCLOUDEDGE HANDS-ON WORKSHOPS
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OPENCLOUDEDGE HANDS-ON WORKSHOPS

• Software installation: Terraform CLI.

• Hashicorp Configuration Language: usage and explanation.

• Basic commands: init, plan, apply, destroy.

• Infrastructure orchestration: deploy, change, delete.

• Use of variables and functions: input, output, count.

• Multiple providers: docker, OpenStack, authentications, providers comparison (example with 
AWS).

• Examples: modules, infrastructure import, deployment of a webserver.
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UPGRADED SERVER CONFIGURATION

Heterogenous HPE DL325 Gen10 servers

• 16 core AMD EPYC 7302

• 64 GB RAM → 128 GB RAM

• Memory constraints: base load 20 – 30 GB (OpenStack + Ceph)

• Bare-metal Kubernetes: NO SWAP memory

• 12-disk Toshiba 2TB 2,5” HDDs in Ceph cluster

• Abysmal performance under load: latency > 1000 ms

• 8-disk Samsung 2TB PM883 enterprise SSD in Ceph cluster

• Consistent < 10 ms latency, Ceph I/O exceeding 1000 MB/s

• 4x 1 Gbps networking → 2x 10 Gbps networking (SFP+)

• Ceph distributed storage network & OpenStack management network

INFRASTRUCTURE CHANGES
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CENTOS WENT EOL

Initial host OS: CentOS 8 (Red Hat community release)

• End of Life: 31 December 2021

Suggested upgrade paths: 

• RHEL 8: commercial release

• CentOS 8 Stream: rolling release “beta” upstream version of RHEL

We want a free stable/LTS host OS with OpenStack support

→ Ubuntu Focal 20.04 LTS  (EOL April 2025)

HOST OS MIGRATIONS
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HIGH AVAILABILITY THROUGHOUT THE MIGRATION PROCESS

✓

• Migrate one/few servers at a time to ensure redundancy.

• Remove old server(s), migrate to new OS, add new server(s)

• Existing OSD configuration can be migrated to avoid double rebalancing.

✓ (When following the correct removal procedure)

• Cordon & drain old server(s), remove worker node from Kubernetes cluster

• If control-plane node: follow procedure to remove from etcd distributed key-value store (e.g. kubeadm destroy)

• Manual removal inside the etcd store IF the prior control-plane server not correctly removed

• Migrate to new OS

• Add server(s) again (e.g. kubeadm join)

HOST OS MIGRATION PROCESS
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HIGH AVAILABILITY THROUGHOUT THE MIGRATION PROCESS

with Kolla-Ansible: X  (Possible but with issues)

Preparation via OpenStack CLI:

• Disable OpenStack services (compute, network, storage) on node(s) to be migrated

• Migrate active resources to remaining nodes

Push updated OpenStack configuration with Kolla-Ansible:

• Kolla-ansible -i [inventory-to-server-to-be-removed] destroy ONLY on the server(s) to be migrated!

• Kolla-ansible -i [inventory-to-remaining-servers] deploy             Updated configuration for operation without the removed node(s)

The OpenStack cluster remains with obsoleted database references to the removed node(s)

• These references trigger errors when adding the migrated node again (using same hostname & IP addr)

• Requires manual removal of various entries from the OpenStack underlying SQL databases

• Could be automated with some research effort

HOST OS MIGRATION PROCESS
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HIGH AVAILABILITY THROUGHOUT THE MIGRATION PROCESS

with Kolla-Ansible: X  (Possible but with issues)

Reinstall server(s) with new OS supported by Kolla-Ansible

• OpenStack Victoria supported OS: CentOS 8, RHEL 8, Debian Buster 10 and Ubuntu Focal 20.04

Deploy migrated node(s) with Kolla-Ansible & update cluster configuration

• Kolla-ansible -i [inventory-to-all-servers] deploy

Kolla-Ansible can manage OpenStack clusters on mixed supported operating systems

• DO NOT specify the openstack_release variable in globals.yml

• Specify openstack_release variable  individually for each node in the Ansible inventory file(s)

HOST OS MIGRATION PROCESS
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Upgrades: OpenStack Rocky (Aug 2018) → OpenStack Xena (Oct 2021)

Test environment: 

• Single-node OpenStack cluster with Ubuntu bionic 18.04 LTS

• Kolla-Ansible using all-in-one Ansible inventory file

Kolla-Ansible provides a version-by-version upgrade path

• Not possible/not recommended to skip versions between upgrades

OPENSTACK VERSION UPGRADES
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KOLLA-ANSIBLE UPGRADE PROCEDURE (IN GENERAL)

• Install latest available Kolla-Ansible version for corresponding OpenStack release 

• Rocky = Kolla-Ansible 7.2.1; Stein = Kolla-Ansible 8.3.0; Train = Kolla-Ansible 9.3.2; etc.

• See Kolla-Ansible release notes and/or PyPI repository

• Upgrade & migrate Kolla-Ansible’s passwords file

• Generate new passwords (sometimes required for new/modified features) 

• Merge with the existing passwords

• Upgrade & migrate Ansible inventory file(s) (sometimes required for new/ modified features)

• Upgrade globals.yml (primarily openstack_release variable)

• Run Kolla-ansible –i all-in-one upgrade

OPENSTACK VERSION UPGRADES
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DOWNTIME DURING UPGRADES (IN GENERAL)

Brief downtime OpenStack components during the service upgrades 

• Downtime in the various OpenStack management services

• Restarts of services using upgraded Kolla containers

• Horizon, Keystone, Neutron, etc. momentarily offline

• Typically < 1 minute downtime per service

Cloud instances (Virtual Machines) remain operational during the upgrades  ✓

• Nova’s libvirt/KVM/QEMU back-end not directly affected by the OpenStack upgrades.

• Network connectivity briefly interrupted  

• Neutron & OpenVSwitch service containers are upgraded and restarted

• Restricted to few seconds of downtime

OPENSTACK VERSION UPGRADES
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EXPERIENCED ISSUES/EXCEPTIONS

Train → Ussuri

• Kolla-Ansible for Train: Python 2, Ussuri: Python 3

• Install Python 3, PIP3, and Python3 versions of Ansible and Kolla-Ansible

Ussuri → Victoria

• Ussuri @ Ubuntu 18.04, Victoria @ Ubuntu 20.04

• 1. upgrade to Victoria on 18.04, 2. perform OS upgrade, 3. Reboot to new OS

• DOWNTIME (OpenStack Services + Virtual Machines) during reboot procedure

Victoria → Wallaby

• Upgraded minimum Docker version requirements

• Kolla-Ansible bootstrap-servers

• Upgrades and restarts Docker → restarts all OpenStack services

• DOWNTIME (OpenStack Services) during Docker restart

OPENSTACK VERSION UPGRADES
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• Opensource Infrastructure-as-Code software tool

• Efficient deployment, orchestration and automation

• One tool to manage any resource, regardless of where, with more than 500 
providers (public/private clouds, network appliances, PaaS, SaaS)

• Excellent to handle multi-cloud / hybrid cloud scenarios

TERRAFORM
What is it and why use it?
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Infrastructure-as-Code (IaC)

Infrastructure example
Configuration file example
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CORE

AWS Provider

TERRAFORM

OpenStack 
Provider

K8s Provider

[…]

AWS Cloud

OpenStack Cloud

K8s Cluster

[…]

Configuration 
File

USERS

TERRAFORM ARCHITECTURE
Core and providers
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TERRAFORM
Use cases examples

• Cloud orchestration

• Automation and replication

• Multi-cloud deployment

• Cloud migration

OpenStack AWS
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TERRAFORM WORKSHOP
Basics and advanced topics

• INIT
Initialize Terraform and look for providers

• PLAN
Overview of what to execute to realize 
what is described in the configuration files

• APPLY
Perform the operations as planned

• DESTROY
Deallocate and destroy all the resources
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• Open-source tool for deploying a service mesh (HCL language, Terraform 
integration)

• Multiple features: Centralized registry, service discovery, health checks, 
zero trust network, load-balancer, Key-Value store...

• Can be easily deployed in both VMs and containers

• Perfect for multi-cloud environment

CONSUL
What is it and why use it?
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Consul architecture

Client

App
A

Server Server Server

Datacenter 1

Client

App 
B

Server Server Server

Datacenter 2

Client

App
B

RPC / LAN Gossip

WAN Gossip

Remote DC
Forwarding

Name Datacenter IP Status

App A 1 192.168.1.45 Alive

App B 2
10.0.0.54,
10.0.0.98

Alive,
Alive

Name Datacenter IP Status

App A 1 192.168.1.45 Alive

App B 2
10.0.0.54,
10.0.0.98

Alive,
Alive

RPC / LAN Gossip
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Consul features

Multi-cloud Service Mesh

• Multi-cloud service mesh

• Mesh gateways 

• Datacenter federation

• mTLS (mutual Transport Layer Security)

Server ServerServer

Mesh GW

Server ServerServer

Mesh GW

DC1

DC2
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Vlaams Supercomputer Centrum (VSC)
OpenStack Cloud

Kubernetes cluster

Consul control plane

Mesh 
GW

VUB
OpenStack Cloud

Kubernetes cluster

Mesh 
GW

Consul control plane

MULTI-CLOUD CONNECTION
K8s cluster federation

App A App B
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Multi-cloud connection
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EXAMPLE
Multi-cloud sensor network

VSC cloud VUB cloud

Consul control plane Consul control plane

Mesh 
GW

Mesh 
GW

SSensor 
Network 2

SSensor 
Network 1

Border router Border router

Database / 
Consul KV

Database / 
Consul KV

APP APP
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