

5TH VLAIO TETRA OPENCLOUDEDGE USER MEETING

INFRASTRUCTURE CHANGES & SOFTWARE UPGRADES

25 February 2022

Steffen Thielemans & Luca Gattobigio – VUB OpenCloudEdge team

OpenCloudEdge hands-on workshops

Infrastructure changes & Host OS migrations

OpenStack version upgrades with Kolla-Ansible

Terraform & Consul

End seminar

OPENCLOUDEDGE HANDS-ON WORKSHOPS

Part 1: Set up & consume elementary OpenStack project environment

- Tenant network, SSH key, Deploy cloud instances from image
- Volume snapshots of modified cloud instances
- Deploy additional instances from this volume snapshot

Part 2: Set up and **deploy** multi-node OpenStack infrastructure using **Kolla-Ansible**

- *OpenStack-inside-OpenStack*: Deployed inside compute instances provided by OpenStack
- Set up host machines, Ansible & Kolla-Ansible configuration
- Deploy OpenStack with Kolla containers
- Consume the OpenStack-inside-OpenStack

volume volu

Overview

Limit Summary

openstack mword

We will schedule additional hands-on workshop events upon request!

OPENCLOUDEDGE HANDS-ON WORKSHOPS

Brief introduction to **Docker** containers

Deployment of multi-node Kubernetes environment

• Simplified testing/development with MicroK8s

Kubernetes interaction and deployments

- Kubectl and Kubernetes Dashboard
- JupyterHub from **Helm** package manager
- Porting containerized webapp to autonomous **horizontally scalable** Kubernetes deployment

СР	U Usage		Memory Usag	je					
CPU (cores)	0 1538 1539 1540 1541 1542 154	43 1544 1545 1546 1547 1548	15:49 15:50 15:51	(10 Gi 0 Gi 15:38	15:39 15:40 15:41	15-42 15-43 15-44	15:45 15:46 15:47		
Ро	Pods								
	Name	Labels	Node	Status	Restarts	CPU Usage (cores)	Memory Usage (bytes)		
0	deepstack-deployment-588947cff9-tljll	app: deepstack pod-template-hash: 588947cff9	boreas	Terminating	0	57.20m	877.10Mi		
0	deepstack-deployment-588947cff9-8zwqp	app: deepstack pod-template-hash: 588947cff9	chronos	Terminating	0	54.00m	876.63Mi		
0	deepstack-deployment-588947cff9-bg6kf	app: deepstack pod-template-hash: 588947cff9	apollo	Terminating	0	5600m	882.09Mi		
0	deepstack-deployment-588947cff9-jj4fv	app: deepstack pod-template-hash: 588947cff9	boreas	Running	0	60.00m	879.04Mi		
0	deepstack-deployment-588947cff9-6trs9	app: deepstack pod-template-hash: 588947cff9	apollo	Terminating	0	south	879.20Mi		
0	deepstack-deployment-588947cff9-2jwp5	app: deepstack pod-template-hash: 588947cff9	chronos	Terminating	0	55.00m	875.09Mi		
0	deepstack-deployment-588947cff9-II7g4	app: deepstack pod-template-hash: 588947cff9	apollo	Terminating	0	57:00 m	869.40Mi		
0	deepstack-deployment-588947cff9-62dlp	app: deepstack pod-template-hash: 588947cff9	chronos	Running	0	57.00	873.11Mi		
	deepstack-deployment-599047off0-Sobja	ann: deanstack nod-template-bash: 588047cff0	borese	Punning	0	A6 00m	969.07Mi		

We will schedule additional hands-on workshop events upon request!

OPENCLOUDEDGE HANDS-ON WORKSHOPS

- **Software installation:** Terraform CLI.
- Hashicorp Configuration Language: usage and explanation.
- **Basic commands:** init, plan, apply, destroy.
- Infrastructure orchestration: deploy, change, delete.
- Use of variables and functions: input, output, count.
- **Multiple providers:** docker, OpenStack, authentications, providers comparison (example with AWS).
- **Examples:** modules, infrastructure import, deployment of a webserver.

We will schedule additional hands-on workshop events upon request!

INFRASTRUCTURE CHANGES UPGRADED SERVER CONFIGURATION

Heterogenous HPE DL325 Gen10 servers

- 16 core AMD EPYC 7302
- 64 GB RAM \rightarrow 128 GB RAM
 - **Memory constraints**: base load 20 30 GB (OpenStack + Ceph)
 - Bare-metal Kubernetes: NO SWAP memory
- 12 disk Toshiba 2TB 2,5" HDDs in Ceph cluster
 - **Abysmal performance** under load: latency > 1000 ms
- 8-disk Samsung 2TB PM883 enterprise SSD in Ceph cluster
 - Consistent < 10 ms latency, Ceph I/O exceeding 1000 MB/s
- 4x 1 Gbps networking \rightarrow 2x 10 Gbps networking (SFP+)
 - Ceph distributed storage network & OpenStack management network

HOST OS MIGRATIONS CENTOS WENT EOL

Initial host OS: CentOS 8 (Red Hat community release)

• End of Life: 31 December 2021

Suggested upgrade paths:

- **RHEL 8**: commercial release
- CentOS 8 Stream: rolling release "beta" upstream version of RHEL

We want a free stable/LTS host OS with OpenStack support

→ Ubuntu Focal 20.04 LTS (EOL April 2025)

HOST OS MIGRATION PROCESS

HIGH AVAILABILITY THROUGHOUT THE MIGRATION PROCESS

🗑 ceph 🗸

- Migrate one/few servers at a time to ensure redundancy.
- Remove old server(s), migrate to new OS, add new server(s)
 - Existing OSD configuration can be migrated to avoid double rebalancing.

- Cordon & drain old server(s), remove worker node from Kubernetes cluster
 - If control-plane node: follow procedure to remove from *etcd* distributed key-value store (e.g. kubeadm destroy)
 - Manual removal inside the etcd store IF the prior control-plane server not correctly removed
- Migrate to new OS
- Add server(s) again (e.g. kubeadm join)

HOST OS MIGRATION PROCESS

HIGH AVAILABILITY THROUGHOUT THE MIGRATION PROCESS

with Kolla-Ansible: X (Possible but with issues)

Preparation via OpenStack CLI:

- Disable OpenStack services (compute, network, storage) on node(s) to be migrated
- Migrate active resources to remaining nodes

Push updated OpenStack configuration with Kolla-Ansible:

- Kolla-ansible -i [inventory-to-server-to-be-removed] destroy
- Kolla-ansible -i [inventory-to-remaining-servers] deploy

ONLY on the server(s) to be migrated! Updated configuration for operation without the removed node(s)

The OpenStack cluster remains with **obsoleted database references** to the removed node(s)

- These references trigger errors when adding the migrated node again (using same hostname & IP addr)
- Requires **manual** removal of various entries from the OpenStack underlying SQL databases
 - Could be automated with some research effort

HOST OS MIGRATION PROCESS

HIGH AVAILABILITY THROUGHOUT THE MIGRATION PROCESS

openstack.

with Kolla-Ansible: X (Possible but with issues)

Reinstall server(s) with new OS supported by Kolla-Ansible

OpenStack Victoria supported OS: <u>CentOS 8</u>, RHEL 8, Debian Buster 10 and <u>Ubuntu Focal 20.04</u>

Deploy migrated node(s) with Kolla-Ansible & update cluster configuration

• Kolla-ansible -i [inventory-to-all-servers] deploy

Kolla-Ansible can manage OpenStack clusters on **mixed** supported operating systems

- DO NOT specify the **openstack_release variable** in globals.yml
- Specify **openstack_release variable** individually for each node in the Ansible inventory file(s)

OPENSTACK VERSION UPGRADES

Upgrades: OpenStack **Rocky** (Aug 2018) \rightarrow OpenStack **Xena** (Oct 2021) Test environment:

- <u>Single-node</u> OpenStack cluster with Ubuntu *bionic* 18.04 LTS
- **Kolla-Ansible** using *all-in-one* Ansible inventory file
- Kolla-Ansible provides a version-by-version upgrade path
 - Not possible/not recommended to skip versions between upgrades

OPENSTACK VERSION UPGRADES

KOLLA-ANSIBLE UPGRADE PROCEDURE (IN GENERAL)

- Install latest available Kolla-Ansible version for corresponding OpenStack release
 - Rocky = Kolla-Ansible 7.2.1; Stein = Kolla-Ansible 8.3.0; Train = Kolla-Ansible 9.3.2; etc.
 - See Kolla-Ansible release notes and/or PyPI repository
- Upgrade & migrate Kolla-Ansible's passwords file
 - Generate new passwords (sometimes required for new/modified features)
 - Merge with the existing passwords
- Upgrade & migrate Ansible inventory file(s) (sometimes required for new/ modified features)
- Upgrade *globals.yml* (primarily *openstack_release* variable)

• Run <u>Kolla-ansible</u> -i all-in-one <u>upgrade</u>

OPENSTACK VERSION UPGRADES DOWNTIME DURING UPGRADES (IN GENERAL)

Brief downtime OpenStack components during the service upgrades

- Downtime in the various OpenStack management services
 - Restarts of services using upgraded Kolla containers
 - Horizon, Keystone, Neutron, etc. momentarily offline
 - Typically < 1 minute downtime per service

Cloud instances (Virtual Machines) remain operational during the upgrades \checkmark

- Nova's *libvirt/KVM/QEMU* back-end not directly affected by the OpenStack upgrades.
- Network connectivity briefly interrupted
 - Neutron & OpenVSwitch service containers are upgraded and restarted
 - Restricted to few seconds of downtime

OPENSTACK VERSION UPGRADES EXPERIENCED ISSUES/EXCEPTIONS

$\textbf{Train} \rightarrow \textbf{Ussuri}$

- Kolla-Ansible for Train: Python 2, Ussuri: Python 3
 - Install Python 3, PIP3, and Python3 versions of Ansible and Kolla-Ansible

$\textbf{Ussuri} \rightarrow \textbf{Victoria}$

- Ussuri @ Ubuntu 18.04, Victoria @ Ubuntu 20.04
 - 1. upgrade to Victoria on 18.04, 2. perform OS upgrade, 3. Reboot to new OS
- <u>DOWNTIME</u> (OpenStack Services + Virtual Machines) during reboot procedure

$\textbf{Victoria} \rightarrow \textbf{Wallaby}$

- Upgraded minimum **Docker version requirements**
- Kolla-Ansible bootstrap-servers
 - Upgrades and restarts Docker → restarts all OpenStack services
- DOWNTIME (OpenStack Services) during Docker restart

Write, Plan, and Create Infrastructure as Code

- Opensource Infrastructure-as-Code software tool
- Efficient deployment, orchestration and automation
- One tool to manage any resource, regardless of where, with more than 500 providers (public/private clouds, network appliances, PaaS, SaaS)
- Excellent to handle multi-cloud / hybrid cloud scenarios

Infrastructure-as-Code (IaC)

provider <u>"openstack"</u> {}

resource "openstack_compute_instance_v2" "tf_instance" {
 count = var.instances_per_subnet
 name = "tf_instance"
 image_name = "example"
 flavor_name = "ml.tiny"
 network {
 name = openstack_networking_network_v2.tf_network.name
 }
}

resource "openstack_networking_network_v2" "terraform_network" {
 name = "tf network"

resource "openstack_networking_subnet_v2" "terraform_subnet" {
 name = "tf_subnet"
 network_id = openstack_networking_network_v2.tf_network.id
 cidr = "192.168.1.0/24"

resource "openstack_blockstorage_volume_v2" "tf_volume" {
 count = var.instances_per_subnet
 name = "tf_volume"
 size = 2

resource "openstack_compute_volume_attach_v2" "tf_attach" {
 count = var.instances_per_subnet
 instance_id = openstack_compute_instance_v2.tf_instance[count.index].id
 volume_id = openstack_blockstorage_volume_v2.tf_volume[count.index].id

resource "openstack_networking_floatingip_v2" "public_network" {
 pool = "ETR0"

Configuration file example

0) Instance Name	Image Name	IP Address	Flavor	Key Pair	Status
C) tf_instance	cirros	192.168.150.178	m1.tiny		Active
0	tf_instance	cirros	192.168.150.55	m1.tiny	-	Active

Name	Description	Size	Status	Group	Туре	Attached To
tf_volume	-	2GiB	In-use	-	DEFAULT	/dev/vdb on tf_instance
tf_volume	-	2GiB	In-use	-	DEFAULT	/dev/vdb on tf_instance

Infrastructure example

TERRAFORM ARCHITECTURE

Core and providers

TERRAFORM

Use cases examples

- Cloud orchestration
- Automation and replication
- Multi-cloud deployment
- Cloud migration

```
terraform {
required version = ">= 0.14.0"
 required providers {
   openstack = {
     source = "terraform-provider-openstack/openstack"
     version = "~> 1.35.0"
 user name = var.user name
 tenant name = var.tenant name
 password = var.password
 auth url = var.auth url
resource "openstack networking network v2" "net" {
 name = var.network name
resource "openstack networking subnet v2" "subnet" {
 name = var.subnet name
 network id = openstack networking network v2.net.id
 cidr = var.cidr value
resource "openstack compute instance v2" "instance" {
 name = var.instance name
 image name = var.image name
 flavor name = var.flavor name
 network {
   name = openstack networking network v2.net.name
resource "openstack blockstorage volume v2" "vol" {
 name = var.volume name
 size = var.volume size
resource "openstack compute volume attach v2" "vol attach"
 instance id = openstack compute instance v2.instance.id
 volume id = openstack blockstorage volume v2.vol.id
```

OpenStack

rovider <u>"aws"</u> { region = var.region access_key = var.access_key secret_key = var.secret_key

resource "aws_vpc" "net" {
 tags = {Name = var.network_name}
 cidr_block = var.cidr_net_block

resource "aws_subnet" "subnet" {
 tags = {Name = var.subnet_name}
 vpc_id = aws_vpc.net.id
 cidr_block = var.cidr_value

resource "aws_instance" "instance" {
 tags = {Name = var.instance_name}
 ami = var.image_name
 instance_type = var.flavor.name
 subnet_id = aws_subnet.subnet.id

resource "aws_ebs_volume" "vol" {
 tags = {Name = var.volume_name}
 size = var.volume_size

resource "aws_volume_attachment" "vol_attach" {
 instance_id = aws_instance.instance.id
 volume_id = aws_ebs_volume.vol.id

TERRAFORM WORKSHOP

Basics and advanced topics

• INIT

Initialize Terraform and look for providers

• PLAN

Overview of what to execute to realize what is described in the configuration files

• APPLY

Perform the operations as planned

DESTROY

Deallocate and destroy all the resources

Enter a value: yes openstack_networking_secgroup_v2.secgroup: Creating... openstack_networking_floatingip_v2.ws_floating_ip: Creating... openstack_networking_network_v2.workshop_network: Creating... penstack_networking_router_v2.ws_router: Creating... nstack_networking_secgroup_v2.secgroup: Creation complete after 0s [id=4c0d3741-1e58-4a4a-9e92-d2450ec2d1f9] nstack_networking_secgroup_rule_v2.secgroup_rule: Creating... penstack_networking_secgroup_rule_v2.secgroup_rule: Creation complete after 0s [id=401cec09-360d-477a-aac1-b948b4d910d3] stack networking network v2.workshop network: Creation complete after 5s [id=c1fb2002-a930-48b3-9476-08ac18708f06] nstack networking subnet v2.workshop subnet: Creating... penstack_compute_instance_v2.workshop_instance: Creating... nstack_networking_floatingip_v2.ws_floating_ip: Creation complete after 6s [id=47ae9b31-423c-49ca-bc7d-b15f94e41e16] Instack_networking_router_v2.ws_router: Creation complete after 6s [id=ed6c0809-6ac5-48a4-b07e-b1457811a628] penstack_networking_subnet_v2.workshop_subnet: Creation complete after 5s [id=49522f7d-0815-43de-b219-74b3b0d6ab2a] stack_networking_router_interface_v2.router_interface: Creating... nstack_compute_instance_v2.workshop_instance: Still creating... [10s elapsed] openstack_networking_router_interface_v2.router_interface: Creation complete after 7s [id=a9044234-ac3a-4f49-a03c-bc5af5f1d840] openstack_compute_instance_v2.workshop_instance: Creation complete after 12s [id=ff18f067-4ad9-4383-97e1-67a1a88e750e] openstack_compute_floatingip_associate_v2.fip_associate: Creating... openstack_compute_floatingip_associate_v2.fip_associate: Creation complete after 2s [id=10.20.29.149/ff18f067-4ad9-4383-97e1-67a1a88e750e/] Apply complete! Resources: 9 added, 0 changed, 0 destroyed. Outputs:

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and working. Further configuration is required.

For online documentation and support please refer to <u>nginx.org</u>. Commercial support is available at <u>nginx.com</u>.

Thank you for using nginx.

floating ip = "10.20.29.149"

- Open-source tool for deploying a service mesh (HCL language, Terraform integration)
- Multiple features: Centralized registry, service discovery, health checks, zero trust network, load-balancer, Key-Value store...
- Can be easily deployed in both VMs and containers
- Perfect for multi-cloud environment

Consul architecture

Consul features

Multi-cloud Service Mesh

- Multi-cloud service mesh
- Mesh gateways
- Datacenter federation
- mTLS (mutual Transport Layer Security)

MULTI-CLOUD CONNECTION

K8s cluster federation

Vlaams Supercomputer Centrum (VSC) OpenStack Cloud

VUB OpenStack Cloud

Multi-cloud connection

ubuntu@ <mark>k8s-cluster:</mark> ~\$ kubectl exec statefulset/consul-server consul members -wan									
Node	Address	Status	Туре	Build	Protocol	DC	Partition	Segment	
consul-server-0.dc-vlaams	192.168.223.97:8302	alive	server	1.10.2	2	dc-vlaams	default	<all></all>	
consul-server-0.dc-vub	172.16.11.19:8302	alive	server	1.11.1	2	dc-vub	default	<all></all>	
	1121201211010002				-		30.3322		

SAVE THE DATE 24 FEBRUARY 2022 AFTERNOON

HEADING FOR THE CLOUD WITH OPENSTACK & KUBERNETES

VRIJE UNIVERSITEIT BRUSSEL

PRELIMINARY AGENDA

13h30 - 14h00: Welcome with coffee

14h00 - 14h40: Approach and experiences TETRA OpenCloudEdge project (Steffen Thielemans & Luca Gattobigio & Priscilla Benedetti, VUB)

14h40 - 15h00: Vlaams Supercomputer Centrum Tier-1 Cloud - Typical use cases (Ewald Pauwels, VSC-UGent)

15h00 – 15h15: Insights on OpenStack and Kubernetes from AXS Guard (Alex Ongena, AXS Guard)

15h15 – 15h30: Nomad as alternative for Kubernetes (Kris Buytaert, Inuits)

15h30 - 16h00: Coffee break

16h00 – 16h15: Best practices and challenges related to containers and microservices (Cloud Security Alliance)

16h15 - 16h30: OpenShift expertise in the Flemish context (Piros)

16h30 - 16h45: Enterprise cloud native computing with Red Hat OpenShift (Westpole)

16h45 - 18h30: Networking drink

Looking for ways on how to scale your current and future IT needs? Thoughts about **Cloud** migration and how to best balance pros and cons? Eager to learn how **open-source** technology fits in?

You are cordially invited to the TETRA OpenCloudEdge seminar, which will take place on Thursday afternoon, **24 February**, in a **hybrid** physical & online format.

Industry and academic speakers will present experience with **OpenStack**, **Kubernetes** and related open-source cloud technologies. They will discuss advantages and pitfalls as well as presenting opportunities.

The physical venue location is **DSP Valley**, **Esperantolaan 4, 3001 Leuven**.

A link for online participation will be sent together with the final programme.

We are looking forward to your attendance. DSP Valley, LSEC and TETRA OpenCloudEdge team