
5TH VLAIO TETRA OPENCLOUDEDGE USER MEETING

INFRASTRUCTURE CHANGES & SOFTWARE UPGRADES

25 February 2022

Steffen Thielemans & Luca Gattobigio – VUB OpenCloudEdge team

OpenCloudEdge hands-on workshops

Infrastructure changes & Host OS migrations

OpenStack version upgrades with Kolla-Ansible

Terraform & Consul

End seminar

AGENDA

2

Part 1: Set up & consume elementary OpenStack project environment

• Tenant network, SSH key, Deploy cloud instances from image

• Volume snapshots of modified cloud instances

• Deploy additional instances from this volume snapshot

Part 2: Set up and deploy multi-node OpenStack infrastructure using Kolla-Ansible

• OpenStack-inside-OpenStack: Deployed inside compute instances provided by OpenStack

• Set up host machines, Ansible & Kolla-Ansible configuration

• Deploy OpenStack with Kolla containers

• Consume the OpenStack-inside-OpenStack

OPENCLOUDEDGE HANDS-ON WORKSHOPS

3We will schedule additional hands-on workshop events upon request!

Brief introduction to Docker containers

Deployment of multi-node Kubernetes environment

• Simplified testing/development with MicroK8s

Kubernetes interaction and deployments

• Kubectl and Kubernetes Dashboard

• JupyterHub from Helm package manager

• Porting containerized webapp to autonomous horizontally scalable Kubernetes deployment

OPENCLOUDEDGE HANDS-ON WORKSHOPS

4We will schedule additional hands-on workshop events upon request!

OPENCLOUDEDGE HANDS-ON WORKSHOPS

• Software installation: Terraform CLI.

• Hashicorp Configuration Language: usage and explanation.

• Basic commands: init, plan, apply, destroy.

• Infrastructure orchestration: deploy, change, delete.

• Use of variables and functions: input, output, count.

• Multiple providers: docker, OpenStack, authentications, providers comparison (example with
AWS).

• Examples: modules, infrastructure import, deployment of a webserver.

5We will schedule additional hands-on workshop events upon request!

UPGRADED SERVER CONFIGURATION

Heterogenous HPE DL325 Gen10 servers

• 16 core AMD EPYC 7302

• 64 GB RAM → 128 GB RAM

• Memory constraints: base load 20 – 30 GB (OpenStack + Ceph)

• Bare-metal Kubernetes: NO SWAP memory

• 12-disk Toshiba 2TB 2,5” HDDs in Ceph cluster

• Abysmal performance under load: latency > 1000 ms

• 8-disk Samsung 2TB PM883 enterprise SSD in Ceph cluster

• Consistent < 10 ms latency, Ceph I/O exceeding 1000 MB/s

• 4x 1 Gbps networking → 2x 10 Gbps networking (SFP+)

• Ceph distributed storage network & OpenStack management network

INFRASTRUCTURE CHANGES

6

✓

X

+

→

CENTOS WENT EOL

Initial host OS: CentOS 8 (Red Hat community release)

• End of Life: 31 December 2021

Suggested upgrade paths:

• RHEL 8: commercial release

• CentOS 8 Stream: rolling release “beta” upstream version of RHEL

We want a free stable/LTS host OS with OpenStack support

→ Ubuntu Focal 20.04 LTS (EOL April 2025)

HOST OS MIGRATIONS

7

END OF LIFE
X

HIGH AVAILABILITY THROUGHOUT THE MIGRATION PROCESS

✓

• Migrate one/few servers at a time to ensure redundancy.

• Remove old server(s), migrate to new OS, add new server(s)

• Existing OSD configuration can be migrated to avoid double rebalancing.

✓ (When following the correct removal procedure)

• Cordon & drain old server(s), remove worker node from Kubernetes cluster

• If control-plane node: follow procedure to remove from etcd distributed key-value store (e.g. kubeadm destroy)

• Manual removal inside the etcd store IF the prior control-plane server not correctly removed

• Migrate to new OS

• Add server(s) again (e.g. kubeadm join)

HOST OS MIGRATION PROCESS

8

HIGH AVAILABILITY THROUGHOUT THE MIGRATION PROCESS

with Kolla-Ansible: X (Possible but with issues)

Preparation via OpenStack CLI:

• Disable OpenStack services (compute, network, storage) on node(s) to be migrated

• Migrate active resources to remaining nodes

Push updated OpenStack configuration with Kolla-Ansible:

• Kolla-ansible -i [inventory-to-server-to-be-removed] destroy ONLY on the server(s) to be migrated!

• Kolla-ansible -i [inventory-to-remaining-servers] deploy Updated configuration for operation without the removed node(s)

The OpenStack cluster remains with obsoleted database references to the removed node(s)

• These references trigger errors when adding the migrated node again (using same hostname & IP addr)

• Requires manual removal of various entries from the OpenStack underlying SQL databases

• Could be automated with some research effort

HOST OS MIGRATION PROCESS

9

HIGH AVAILABILITY THROUGHOUT THE MIGRATION PROCESS

with Kolla-Ansible: X (Possible but with issues)

Reinstall server(s) with new OS supported by Kolla-Ansible

• OpenStack Victoria supported OS: CentOS 8, RHEL 8, Debian Buster 10 and Ubuntu Focal 20.04

Deploy migrated node(s) with Kolla-Ansible & update cluster configuration

• Kolla-ansible -i [inventory-to-all-servers] deploy

Kolla-Ansible can manage OpenStack clusters on mixed supported operating systems

• DO NOT specify the openstack_release variable in globals.yml

• Specify openstack_release variable individually for each node in the Ansible inventory file(s)

HOST OS MIGRATION PROCESS

10

Upgrades: OpenStack Rocky (Aug 2018) → OpenStack Xena (Oct 2021)

Test environment:

• Single-node OpenStack cluster with Ubuntu bionic 18.04 LTS

• Kolla-Ansible using all-in-one Ansible inventory file

Kolla-Ansible provides a version-by-version upgrade path

• Not possible/not recommended to skip versions between upgrades

OPENSTACK VERSION UPGRADES

11

KOLLA-ANSIBLE UPGRADE PROCEDURE (IN GENERAL)

• Install latest available Kolla-Ansible version for corresponding OpenStack release

• Rocky = Kolla-Ansible 7.2.1; Stein = Kolla-Ansible 8.3.0; Train = Kolla-Ansible 9.3.2; etc.

• See Kolla-Ansible release notes and/or PyPI repository

• Upgrade & migrate Kolla-Ansible’s passwords file

• Generate new passwords (sometimes required for new/modified features)

• Merge with the existing passwords

• Upgrade & migrate Ansible inventory file(s) (sometimes required for new/ modified features)

• Upgrade globals.yml (primarily openstack_release variable)

• Run Kolla-ansible –i all-in-one upgrade

OPENSTACK VERSION UPGRADES

12

DOWNTIME DURING UPGRADES (IN GENERAL)

Brief downtime OpenStack components during the service upgrades

• Downtime in the various OpenStack management services

• Restarts of services using upgraded Kolla containers

• Horizon, Keystone, Neutron, etc. momentarily offline

• Typically < 1 minute downtime per service

Cloud instances (Virtual Machines) remain operational during the upgrades ✓

• Nova’s libvirt/KVM/QEMU back-end not directly affected by the OpenStack upgrades.

• Network connectivity briefly interrupted

• Neutron & OpenVSwitch service containers are upgraded and restarted

• Restricted to few seconds of downtime

OPENSTACK VERSION UPGRADES

13

EXPERIENCED ISSUES/EXCEPTIONS

Train → Ussuri

• Kolla-Ansible for Train: Python 2, Ussuri: Python 3

• Install Python 3, PIP3, and Python3 versions of Ansible and Kolla-Ansible

Ussuri → Victoria

• Ussuri @ Ubuntu 18.04, Victoria @ Ubuntu 20.04

• 1. upgrade to Victoria on 18.04, 2. perform OS upgrade, 3. Reboot to new OS

• DOWNTIME (OpenStack Services + Virtual Machines) during reboot procedure

Victoria → Wallaby

• Upgraded minimum Docker version requirements

• Kolla-Ansible bootstrap-servers

• Upgrades and restarts Docker → restarts all OpenStack services

• DOWNTIME (OpenStack Services) during Docker restart

OPENSTACK VERSION UPGRADES

14

• Opensource Infrastructure-as-Code software tool

• Efficient deployment, orchestration and automation

• One tool to manage any resource, regardless of where, with more than 500
providers (public/private clouds, network appliances, PaaS, SaaS)

• Excellent to handle multi-cloud / hybrid cloud scenarios

TERRAFORM
What is it and why use it?

15

Infrastructure-as-Code (IaC)

Infrastructure example
Configuration file example

16

CORE

AWS Provider

TERRAFORM

OpenStack
Provider

K8s Provider

[…]

AWS Cloud

OpenStack Cloud

K8s Cluster

[…]

Configuration
File

USERS

TERRAFORM ARCHITECTURE
Core and providers

17

TERRAFORM
Use cases examples

• Cloud orchestration

• Automation and replication

• Multi-cloud deployment

• Cloud migration

OpenStack AWS

18

TERRAFORM WORKSHOP
Basics and advanced topics

• INIT
Initialize Terraform and look for providers

• PLAN
Overview of what to execute to realize
what is described in the configuration files

• APPLY
Perform the operations as planned

• DESTROY
Deallocate and destroy all the resources

19

• Open-source tool for deploying a service mesh (HCL language, Terraform
integration)

• Multiple features: Centralized registry, service discovery, health checks,
zero trust network, load-balancer, Key-Value store...

• Can be easily deployed in both VMs and containers

• Perfect for multi-cloud environment

CONSUL
What is it and why use it?

20

Consul architecture

Client

App
A

Server Server Server

Datacenter 1

Client

App
B

Server Server Server

Datacenter 2

Client

App
B

RPC / LAN Gossip

WAN Gossip

Remote DC
Forwarding

Name Datacenter IP Status

App A 1 192.168.1.45 Alive

App B 2
10.0.0.54,
10.0.0.98

Alive,
Alive

Name Datacenter IP Status

App A 1 192.168.1.45 Alive

App B 2
10.0.0.54,
10.0.0.98

Alive,
Alive

RPC / LAN Gossip

21

Consul features

Multi-cloud Service Mesh

• Multi-cloud service mesh

• Mesh gateways

• Datacenter federation

• mTLS (mutual Transport Layer Security)

Server ServerServer

Mesh GW

Server ServerServer

Mesh GW

DC1

DC2

22

Vlaams Supercomputer Centrum (VSC)
OpenStack Cloud

Kubernetes cluster

Consul control plane

Mesh
GW

VUB
OpenStack Cloud

Kubernetes cluster

Mesh
GW

Consul control plane

MULTI-CLOUD CONNECTION
K8s cluster federation

App A App B

23

Multi-cloud connection

24

EXAMPLE
Multi-cloud sensor network

VSC cloud VUB cloud

Consul control plane Consul control plane

Mesh
GW

Mesh
GW

SSensor
Network 2

SSensor
Network 1

Border router Border router

Database /
Consul KV

Database /
Consul KV

APP APP

25

26

