
TETRA OpenCloudEdge
Virtual meeting June 2020

1

Contents

• Recap cloud concepts

• Current infrastructure

• Kubernetes concepts

• Deployed Kubernetes applications

• First experiences with OpenStack

• Conclusion and future work

2

Cloud concepts

IaaS building blocks: Compute, Storage, Network
3

Our cloud infrastructure servers

3x HPE ProLiant DL325 gen 10
• 1U single rack unit

• AMD EPYC 7302P 16 core processor

• 64 GB Registered RAM

• 8 Small Form Factor (2,5”) SATA storage
• 1TB SSD and 3x 2TB HDD

• 4x 1 Gbps Ethernet

An uneven amount of servers
is preferable for distributed
application to achieve quorum

4

Distributed storage

Ceph distributed & redundant storage
• Object storage

• Block storage

• File storage

Open source software-based solution

Can be back-end for OpenStack Cinder, Glance, Swift

13 TB redundant storage

Combination of slow (HDD) and faster* (SSD) storage
5

Networking

Only 1x 1 Gbps network interface in use per server

BUT: 4x 1 Gbps per server available

We will buy additional network equipment

Possible improvements
• IEEE 802.3ad link aggregation

• Distinct network segments for public / cloud-internal / distributed storage

6

Networking
Servers and regular (edge) devices are on different network segments

• Cloud-internal network between different network segments is tricky
• Cloud-internal overlay network using IP-in-IP or VXLAN

No public IPv6 available: use of private ranges on fc00::/7

Might migrate to a separated network segment
• Better network test environment completely under our control
• allows experimenting with BGP features

7

Server
network
segment

Internal
network
segment

Internet

10.20.0.0/16 10.0.0.0/16

Integrating workstations and “edge” devices

Inside VUB-ETRO network
• Workstation computers

• Machine with RTX 2070 GPU for CUDA workloads

• Raspberry Pi as IoT gateway

• Provides Low latency, high bandwidth with our private cloud servers

At researcher’s home network (connected via VPN)
• High latency, low bandwidth with our private cloud servers

• Low latency, high bandwidth inside the home network

• Significant difference cloud-edge regarding network performance
8

Interaction with the public cloud

Future work

No foreseeable problems
• Our private cloud infrastructure can get public IPv4 addresses

• Bi-directional communication possible

Which public cloud providers would we look at according to you?

9

https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.realdolmen.com%2Fsites%2Fdefault%2Ffiles%2Fstyles%2Fpar%2Fpublic%2F2018-09%2FAWS_Small_4_Colour.png%3Fitok%3DMwVBDfN_&imgrefurl=https%3A%2F%2Fwww.realdolmen.com%2Fnl%2Fsolution%2Faws&tbnid=zbEci9xRDqoCwM&vet=12ahUKEwiGoJuT2ojqAhVQuqQKHWECCXAQMygBegUIARCmAQ..i&docid=oHyEMk8u8K-azM&w=350&h=208&q=aws&client=firefox-b-d&ved=2ahUKEwiGoJuT2ojqAhVQuqQKHWECCXAQMygBegUIARCmAQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.catsanddogs.com%2Fwp-content%2Fuploads%2F2019%2F07%2FMicrosoft_Azure_Logo.png&imgrefurl=https%3A%2F%2Fwww.catsanddogs.com%2Fazure%2F&tbnid=eJBgB8gCPb3sKM&vet=12ahUKEwjum4OX2ojqAhXtN-wKHQe6BZIQMygCegUIARCoAQ..i&docid=NV-CG4wV_HPGIM&w=300&h=200&q=azure&client=firefox-b-d&ved=2ahUKEwjum4OX2ojqAhXtN-wKHQe6BZIQMygCegUIARCoAQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fstatic1.purestorage.com%2Fcontent%2Fdam%2Fpurestorage%2Fgraphics%2Flogos%2Flogo-openstack-vertical.png.imgo.png&imgrefurl=https%3A%2F%2Fwww.purestorage.com%2Fnl%2Fsolutions%2Finfrastructure%2Fopenstack.html&tbnid=x2-xvsAkL7qYTM&vet=12ahUKEwibntaj2ojqAhUjuqQKHfJLA6MQMygBegUIARCUAQ..i&docid=NRYNsDAbOPgxRM&w=1028&h=600&q=openstack&client=firefox-b-d&ved=2ahUKEwibntaj2ojqAhUjuqQKHfJLA6MQMygBegUIARCUAQ

Cloud environments and their host OS

OpenStack, Kubernetes, etc. need an underlying host OS (or hypervisor)

RHEL/CentOS 7 rather dated (7/2014)
• Newer hardware might not perform optimally

RHEL/CentOS 8 new at time of testing (9/2019)
• Not yet all software and libraries compatible (1/2020)

OpenStack Train: CentOS 8 support

OpenStack Ussuri: CentOS 8 support ✔

First get to know Kubernetes while waiting on Ussuri release
10

What is Kubernetes?

Kubernetes (K8s) = Container orchestration platform

Automates deployment, scaling and management of containerized apps

Open source and initially developed by Google

Currently very popular in the cloud ecosystem

Requires an external container engine: e.g. Docker

11

Virtualization or Containerization?

+
12

https://www.google.com/search?q=openstack&client=firefox-b-d&tbm=isch&source=iu&ictx=1&fir=rgffYgPMNsVFbM%253A%252Cjpd-yzhrpgtvPM%252C%252Fm%252F0cm87w_&vet=1&usg=AI4_-kT7gAKuk2P5G2f-bv__1Kq5r7j-Lg&sa=X&ved=2ahUKEwiO2YuC7_vnAhUrTxUIHX9fDkkQ_B0wCnoECAsQAw#imgrc=rgffYgPMNsVFbM:

Kubernetes basic concepts

Pods → building blocks. They can contain
• Compute: one or more containerized apps

• Storage: volumes can be mounted

• Network: cloud-internal IP address

13

Kubernetes basic concepts

Nodes → machines running Kubernetes
• Nodes run pods

Worker nodes run kubelet and Docker
• Remotely managed by control-plane

Control-plane nodes manage and schedule the cluster
• Control-plane requires quorum for decision making

14

Kubernetes basic concepts

Deployments → pod orchestration
• Describe how to deploy & maintain pods and their amount of replicas

Pods are automictically (re)deployed in case of update or problem

Horizontal Autoscaling can be included to adapt the replica count
based on their resource metrics.

15

“I want X pods of version Y of
application Z up and running

using these resource constraints.”

Kubernetes basic concepts

Services → persistent access points to sets of homogenous pods

Why?
• Persistent access point: pods can be short-living and have dynamic IP

• Load balancing between available pods

• Can facilitate cloud-external access

16

Pod A

Pod B

Pod N

…

Service

Incoming
requests

134.184.1.2

172.20.52.100

172.20.52.184

172.20.52.62

Cloud-internal
IP addresses

Cloud-external
IP address

Kubernetes basic concepts

Namespaces are used to create separate environments
• Different applications/deployments

• Different users

Role-Based Access Control (RBAC) policies provide Authorization
• On namespace level: Roles + RoleBindings

• On k8s cluster level: ClusterRoles + ClusterRoleBindings

Clients can Authenticate with K8s API via ServiceAccount
or via external method (X509 Certificate, OpenStack Keystone, etc.)

17

Kubernetes basic concepts

Ingress: HTTP(S) reverse proxy server for incoming connections

Storage via PersistentVolume and PersistentVolumeClaim abstractions

• PV → Infrastructure side PVC → Application side

• Can be automated via StorageClass resource

18

• Allows having multiple (web)applications on the
same IP:port combination by using DNS name

• TLS termination and certificate management

Kubernetes and virtualization

Kubernetes → containerization
• Containers use kernel cgroups for isolation

• Isolated but still remains a shared operating system

• What about bugs and vulnerabilities?

Projects like KubeVirt and Kata Containers goal:

Kubernetes → virtualization

19

Kubernetes Applications

20

Self-hosted Docker registry

Containerized applications work via images
• Prebuilt from base images with application-specific changes applied

• Public registry (image repository) available on https://hub.docker.com

Host private registry on the K8s cluster
• Local → low delay, high bandwidth

• Keep development internal

K8s manages high-availability of the registry

21

https://hub.docker.com/

Object detection on images

GPU-accelerated (CUDA) training of model (via COCO dataset)

Webapp with OpenCV backend (on CPU) detects objects
• Horizontal autoscaling adapts compute based on load metrics

22
HTTP POST request HTTP POST response

ETROpy online programming environment

Web application for students to make programming exercises
• Generic approach allows many languages: Python, Java, C, C++, C# (and more)

• No control over uploaded source code under evaluation

Use the benefits of containerization
• Short-lived containers (pods) in isolated environment
• Images provide suitable environments (compiler, interpreter, libraries)

23

Platform must be able to safely
execute potentially malicious code

ETROpy online programming environment

ETROpy webapp manages code-validation pods in etropy namespace
• Webapp uses K8s client API (Python)
• Authentication & authorization via ServiceAccount and RBAC

1. Create pod from image with suitable environment

2. Transfer source code

3. Compile source code if required; return on failure

4. Validate use-cases sequentially:
a) Transfer use-case input
b) Run program with use-case input; return on failure or timeout
c) Retrieve use-case output and validate

5. Terminate pod, process results

24

Continuous integration and deployment

For our current cryptographic research we evaluate:

• The scalability of the cryptographic technique

• The practical feasibility and means of implementation

25

Classic application architecture

client
RESTful
service

PostgreSQL

academic interest:

client and service

26

The stack

Rust

Actix Web + Diesel

Docker

REST serviceMobile application

Rust

Java

Android

27

Gitlab CI

This image of Gitlab is licensed under CC BY-SA.
28

https://creativecommons.org/licenses/by-sa/3.0/

.gitlab-ci.yml

build:nightly:

<<: *rust-nightly

stage: build

script:

- cargo build --all-features

- cargo build --release --all-features

29

Gitlab CI on top of Kubernetes

Gitlab jobs operate (typically) in Docker.

Kubernetes provides a logic partner.

https://docs.gitlab.com/runner/install/kubernetes.html

30

https://docs.gitlab.com/runner/install/kubernetes.html

Docker-in-Docker (dind)

A Gitlab job building a Docker container e.g.:

build:docker:

<<: *dind

stage: build

script:

- docker build .

This requires Docker-in-Docker, or a 3rd

party build-tool (e.g. Kaniko).

31

Towards Kubernetes continuous deployment

This image of Gitlab is licensed under CC BY-SA.

Gitlab provides Kubernetes integration in recent versions,
allowing the deployment of built images.

32

https://creativecommons.org/licenses/by-sa/3.0/

OpenStack Ussuri current experiences

Open-source cloud platform

Released May 2020

DevStack
script to bootstrap single-node OpenStack

used for development of OpenStack services

tested on Ubuntu 18.04

Future work: other deployment options

33

Network Function Virtualization

34

NFVI

MANOVNFs

vRouter vEPCvFW

Conclusion

• Introduction of our physical ‘cloud’ infrastructure

• OpenStack evaluation postponed while waiting on Ussuri version

• Impressed with Kubernetes operation, performance, userbase
• Probably suffices for majority of SME use-cases

• We have introduced basic concepts and several deployed applications

• Isolation Containerization ↔ Virtualization might remain an issue for some

35

Future work

• Add 3 GPUs to the K8s cluster:
accelerate cryptographic operations

• Kubernetes integration with Gitlab

• Extension of network infrastructure and IPv6 evaluation

• OpenStack ↔ KubeVirt (or similar technology)

• Interaction with edge and public cloud

36

Points to discuss

• Kubernetes ↔ OpenStack

• Hybrid cloud - preferences

• Use-case suggestions

• Other suggestions

Next meeting: Hands-on workshop in December 2020 (TBD)

37

